These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 34207206)

  • 1. Sophorolipid-Based Oligomers as Polyol Components for Polyurethane Systems.
    Sonnabend M; Aubin SG; Schmidt AM; Leimenstoll MC
    Polymers (Basel); 2021 Jun; 13(12):. PubMed ID: 34207206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bio-Based Polyurethane Foams with Castor Oil Based Multifunctional Polyols for Improved Compressive Properties.
    Lee JH; Kim SH; Oh KW
    Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33672983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suberinic Acids as a Potential Feedstock for Polyol Synthesis: Separation and Characterization.
    Rizikovs J; Godina D; Makars R; Paze A; Abolins A; Fridrihsone A; Meile K; Kirpluks M
    Polymers (Basel); 2021 Dec; 13(24):. PubMed ID: 34960931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High Functionality Bio-Polyols from Tall Oil and Rigid Polyurethane Foams Formulated Solely Using Bio-Polyols.
    Kirpluks M; Vanags E; Abolins A; Michalowski S; Fridrihsone A; Cabulis U
    Materials (Basel); 2020 Apr; 13(8):. PubMed ID: 32344553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recycling of polyurethanes from laboratory to industry, a journey towards the sustainability.
    Simón D; Borreguero AM; de Lucas A; Rodríguez JF
    Waste Manag; 2018 Jun; 76():147-171. PubMed ID: 29625876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of High-Performance Biodegradable Rigid Polyurethane Foams Using Full Modified Soy-Based Polyols.
    Fang Z; Qiu C; Ji D; Yang Z; Zhu N; Meng J; Hu X; Guo K
    J Agric Food Chem; 2019 Feb; 67(8):2220-2226. PubMed ID: 30726082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of Jatropha-Oil-Based Polyester Polyol as Sustainable Biobased Material for Waterborne Polyurethane Dispersion.
    Sundang M; Nurdin NS; Saalah S; Singam YJ; Al Edrus SSO; Ismail NM; Sipaut CS; Abdullah LC
    Polymers (Basel); 2022 Sep; 14(18):. PubMed ID: 36145855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexible Polyurethane Foams from Epoxidized Vegetable Oils and a Bio-Based Diisocyanate.
    Cifarelli A; Boggioni L; Vignali A; Tritto I; Bertini F; Losio S
    Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33670627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bio-Polyurethane Foams Modified with a Mixture of Bio-Polyols of Different Chemical Structures.
    Prociak A; Kurańska M; Uram K; Wójtowicz M
    Polymers (Basel); 2021 Jul; 13(15):. PubMed ID: 34372072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyols and polyurethanes from the liquefaction of lignocellulosic biomass.
    Hu S; Luo X; Li Y
    ChemSusChem; 2014 Jan; 7(1):66-72. PubMed ID: 24357542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonedible Vegetable Oil-Based Polyols in Anticorrosive and Antimicrobial Polyurethane Coatings.
    Patil CK; Jung DW; Jirimali HD; Baik JH; Gite VV; Hong SC
    Polymers (Basel); 2021 Sep; 13(18):. PubMed ID: 34578051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyurethane Coatings Based on Renewable White Dextrins and Isocyanate Trimers.
    Konieczny J; Loos K
    Macromol Rapid Commun; 2019 May; 40(10):e1800874. PubMed ID: 30730069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lignin-Based Polyurethane: Recent Advances and Future Perspectives.
    Ma X; Chen J; Zhu J; Yan N
    Macromol Rapid Commun; 2021 Feb; 42(3):e2000492. PubMed ID: 33205584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bio-Based Polyurethane Networks Derived from Liquefied Sawdust.
    Gosz K; Tercjak A; Olszewski A; Haponiuk J; Piszczyk Ł
    Materials (Basel); 2021 Jun; 14(11):. PubMed ID: 34200442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of Different Epoxidation Approaches of Tall Oil Fatty Acids on Rigid Polyurethane Foam Thermal Insulation.
    Abolins A; Pomilovskis R; Vanags E; Mierina I; Michalowski S; Fridrihsone A; Kirpluks M
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33668608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Producing Lignin-Based Polyols through Microwave-Assisted Liquefaction for Rigid Polyurethane Foam Production.
    Xue BL; Wen JL; Sun RC
    Materials (Basel); 2015 Feb; 8(2):586-599. PubMed ID: 28787959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery of Green Polyols from Rigid Polyurethane Waste by Catalytic Depolymerization.
    Miguel-Fernández R; Amundarain I; Asueta A; García-Fernández S; Arnaiz S; Miazza NL; Montón E; Rodríguez-García B; Bianca-Benchea E
    Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rationally Designed Eugenol-Based Chain Extender for Self-Healing Polyurethane Elastomers.
    Lee UJ; Shin SR; Noh H; Song HB; Kim J; Lee DS; Kim BG
    ACS Omega; 2021 Nov; 6(43):28848-28858. PubMed ID: 34746577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Pathway toward a New Era of Open-Cell Polyurethane Foams-Influence of Bio-Polyols Derived from Used Cooking Oil on Foams Properties.
    Kurańska M; Malewska E; Polaczek K; Prociak A; Kubacka J
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33207702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New Insight on the Study of the Kinetic of Biobased Polyurethanes Synthesis Based on Oleo-Chemistry.
    Peyrton J; Chambaretaud C; Avérous L
    Molecules; 2019 Nov; 24(23):. PubMed ID: 31783536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.