These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Identification and Characterization of Mortaparib Sari AN; Elwakeel A; Dhanjal JK; Kumar V; Sundar D; Kaul SC; Wadhwa R Cancers (Basel); 2021 Feb; 13(4):. PubMed ID: 33671256 [TBL] [Abstract][Full Text] [Related]
3. Mortaparib, a novel dual inhibitor of mortalin and PARP1, is a potential drug candidate for ovarian and cervical cancers. Putri JF; Bhargava P; Dhanjal JK; Yaguchi T; Sundar D; Kaul SC; Wadhwa R J Exp Clin Cancer Res; 2019 Dec; 38(1):499. PubMed ID: 31856867 [TBL] [Abstract][Full Text] [Related]
4. Identification of a new member of Mortaparib class of inhibitors that target mortalin and PARP1. Meidinna HN; Shefrin S; Sari AN; Zhang H; Dhanjal JK; Kaul SC; Sundar D; Wadhwa R Front Cell Dev Biol; 2022; 10():918970. PubMed ID: 36172283 [TBL] [Abstract][Full Text] [Related]
5. Mixtures of Three Mortaparibs with Enhanced Anticancer, Anti-Migration, and Antistress Activities: Molecular Characterization in p53-Null Cancer Cells. Wadhwa R; Yang S; Meidinna HN; Sari AN; Bhargava P; Kaul SC Cancers (Basel); 2024 Jun; 16(12):. PubMed ID: 38927944 [TBL] [Abstract][Full Text] [Related]
6. Computational and in vitro experimental analyses of the Anti-COVID-19 potential of Mortaparib and MortaparibPlus. Kumar V; Sari AN; Meidinna HN; Dhanjal JK; Subramani C; Basu B; Kaul SC; Vrati S; Sundar D; Wadhwa R Biosci Rep; 2021 Oct; ():. PubMed ID: 34605873 [TBL] [Abstract][Full Text] [Related]
7. Why is Mortalin a Potential Therapeutic Target for Cancer? Yoon AR; Wadhwa R; Kaul SC; Yun CO Front Cell Dev Biol; 2022; 10():914540. PubMed ID: 35859897 [TBL] [Abstract][Full Text] [Related]
8. Cell Cycle Arrest and Cytotoxic Effects of SAHA and RG7388 Mediated through p21 Natarajan U; Venkatesan T; Radhakrishnan V; Samuel S; Rasappan P; Rathinavelu A Medicina (Kaunas); 2019 Jan; 55(2):. PubMed ID: 30700046 [TBL] [Abstract][Full Text] [Related]
9. Apoptotic response to camptothecin and 7-hydroxystaurosporine (UCN-01) in the 8 human breast cancer cell lines of the NCI Anticancer Drug Screen: multifactorial relationships with topoisomerase I, protein kinase C, Bcl-2, p53, MDM-2 and caspase pathways. Nieves-Neira W; Pommier Y Int J Cancer; 1999 Jul; 82(3):396-404. PubMed ID: 10399957 [TBL] [Abstract][Full Text] [Related]
10. Identifications small molecules inhibitor of p53-mortalin complex for cancer drug using virtual screening. Utomo DH; Widodo N; Rifa'i M Bioinformation; 2012; 8(9):426-9. PubMed ID: 22715313 [TBL] [Abstract][Full Text] [Related]
11. Investigation of the role of Bax, p21/Waf1 and p53 as determinants of cellular responses in HCT116 colorectal cancer cells exposed to the novel cytotoxic ruthenium(II) organometallic agent, RM175. Hayward RL; Schornagel QC; Tente R; Macpherson JS; Aird RE; Guichard S; Habtemariam A; Sadler P; Jodrell DI Cancer Chemother Pharmacol; 2005 Jun; 55(6):577-83. PubMed ID: 15726367 [TBL] [Abstract][Full Text] [Related]
12. Molecular dynamics-based identification of novel natural mortalin-p53 abrogators as anticancer agents. Nagpal N; Goyal S; Dhanjal JK; Ye L; Kaul SC; Wadhwa R; Chaturvedi R; Grover A J Recept Signal Transduct Res; 2017 Feb; 37(1):8-16. PubMed ID: 27380217 [TBL] [Abstract][Full Text] [Related]
13. Targeting Mortalin by Embelin Causes Activation of Tumor Suppressor p53 and Deactivation of Metastatic Signaling in Human Breast Cancer Cells. Nigam N; Grover A; Goyal S; Katiyar SP; Bhargava P; Wang PC; Sundar D; Kaul SC; Wadhwa R PLoS One; 2015; 10(9):e0138192. PubMed ID: 26376435 [TBL] [Abstract][Full Text] [Related]
14. Induction of mutant p53-dependent apoptosis in human hepatocellular carcinoma by targeting stress protein mortalin. Lu WJ; Lee NP; Kaul SC; Lan F; Poon RT; Wadhwa R; Luk JM Int J Cancer; 2011 Oct; 129(8):1806-14. PubMed ID: 21165951 [TBL] [Abstract][Full Text] [Related]
15. Withanone binds to mortalin and abrogates mortalin-p53 complex: computational and experimental evidence. Grover A; Priyandoko D; Gao R; Shandilya A; Widodo N; Bisaria VS; Kaul SC; Wadhwa R; Sundar D Int J Biochem Cell Biol; 2012 Mar; 44(3):496-504. PubMed ID: 22155302 [TBL] [Abstract][Full Text] [Related]
16. p53 independent G0/G1 arrest and apoptosis induced by a novel retinoid in human breast cancer cells. Shao ZM; Dawson MI; Li XS; Rishi AK; Sheikh MS; Han QX; Ordonez JV; Shroot B; Fontana JA Oncogene; 1995 Aug; 11(3):493-504. PubMed ID: 7630633 [TBL] [Abstract][Full Text] [Related]
17. Mitochondrially targeted p53 or DBD subdomain is superior to wild type p53 in ovarian cancer cells even with strong dominant negative mutant p53. Lu P; Vander Mause ER; Redd Bowman KE; Brown SM; Ahne L; Lim CS J Ovarian Res; 2019 May; 12(1):45. PubMed ID: 31092272 [TBL] [Abstract][Full Text] [Related]
18. Normal p53 status and function despite the development of drug resistance in human breast cancer cells. Wosikowski K; Regis JT; Robey RW; Alvarez M; Buters JT; Gudas JM; Bates SE Cell Growth Differ; 1995 Nov; 6(11):1395-403. PubMed ID: 8562478 [TBL] [Abstract][Full Text] [Related]
20. In silico analysis of the binding properties of solasonine to mortalin and p53, and in vitro pharmacological studies of its apoptotic and cytotoxic effects on human HepG2 and Hep3b hepatocellular carcinoma cells. Pham MQ; Tran THV; Pham QL; Gairin JE Fundam Clin Pharmacol; 2019 Aug; 33(4):385-396. PubMed ID: 30628118 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]