These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 34207255)

  • 1. OmiEmbed: A Unified Multi-Task Deep Learning Framework for Multi-Omics Data.
    Zhang X; Xing Y; Sun K; Guo Y
    Cancers (Basel); 2021 Jun; 13(12):. PubMed ID: 34207255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uncertainty-aware dynamic integration for multi-omics classification of tumors.
    Du L; Liu C; Wei R; Chen J
    J Cancer Res Clin Oncol; 2023 Jul; 149(7):3301-3312. PubMed ID: 35925427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AVBAE-MODFR: A novel deep learning framework of embedding and feature selection on multi-omics data for pan-cancer classification.
    Li M; Guo H; Wang K; Kang C; Yin Y; Zhang H
    Comput Biol Med; 2024 Jul; 177():108614. PubMed ID: 38796884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrate multi-omics data with biological interaction networks using Multi-view Factorization AutoEncoder (MAE).
    Ma T; Zhang A
    BMC Genomics; 2019 Dec; 20(Suppl 11):944. PubMed ID: 31856727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CLCLSA: Cross-omics Linked embedding with Contrastive Learning and Self Attention for multi-omics integration with incomplete multi-omics data.
    Zhao C; Liu A; Zhang X; Cao X; Ding Z; Sha Q; Shen H; Deng HW; Zhou W
    ArXiv; 2023 Apr; ():. PubMed ID: 37090237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CLCLSA: Cross-omics Linked embedding with Contrastive Learning and Self Attention for multi-omics integration with incomplete multi-omics data.
    Zhao C; Liu A; Zhang X; Cao X; Ding Z; Sha Q; Shen H; Deng HW; Zhou W
    Res Sq; 2023 May; ():. PubMed ID: 37205427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep latent space fusion for adaptive representation of heterogeneous multi-omics data.
    Zhang C; Chen Y; Zeng T; Zhang C; Chen L
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35079777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Capturing the latent space of an Autoencoder for multi-omics integration and cancer subtyping.
    Madhumita ; Paul S
    Comput Biol Med; 2022 Sep; 148():105832. PubMed ID: 35834966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. JDSNMF: Joint Deep Semi-Non-Negative Matrix Factorization for Learning Integrative Representation of Molecular Signals in Alzheimer's Disease.
    Moon S; Lee H
    J Pers Med; 2021 Jul; 11(8):. PubMed ID: 34442330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-omics integration method based on attention deep learning network for biomedical data classification.
    Gong P; Cheng L; Zhang Z; Meng A; Li E; Chen J; Zhang L
    Comput Methods Programs Biomed; 2023 Apr; 231():107377. PubMed ID: 36739624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CLCLSA: Cross-omics linked embedding with contrastive learning and self attention for integration with incomplete multi-omics data.
    Zhao C; Liu A; Zhang X; Cao X; Ding Z; Sha Q; Shen H; Deng HW; Zhou W
    Comput Biol Med; 2024 Mar; 170():108058. PubMed ID: 38295477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating multi-omics data through deep learning for accurate cancer prognosis prediction.
    Chai H; Zhou X; Zhang Z; Rao J; Zhao H; Yang Y
    Comput Biol Med; 2021 Jul; 134():104481. PubMed ID: 33989895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SADLN: Self-attention based deep learning network of integrating multi-omics data for cancer subtype recognition.
    Sun Q; Cheng L; Meng A; Ge S; Chen J; Zhang L; Gong P
    Front Genet; 2022; 13():1032768. PubMed ID: 36685873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fair experimental comparison of neural network architectures for latent representations of multi-omics for drug response prediction.
    Hauptmann T; Kramer S
    BMC Bioinformatics; 2023 Feb; 24(1):45. PubMed ID: 36788531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of multi-omics data using adaptive graph learning and attention mechanism for patient classification and biomarker identification.
    Ouyang D; Liang Y; Li L; Ai N; Lu S; Yu M; Liu X; Xie S
    Comput Biol Med; 2023 Sep; 164():107303. PubMed ID: 37586201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MOSDNET: A multi-omics classification framework using simplified multi-view deep discriminant representation learning and dynamic edge GCN with multi-task learning.
    Li M; Chen Z; Deng S; Wang L; Yu X
    Comput Biol Med; 2024 Oct; 181():109040. PubMed ID: 39168014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep multi-omics integration by learning correlation-maximizing representation identifies prognostically stratified cancer subtypes.
    Ji Y; Dutta P; Davuluri R
    Bioinform Adv; 2023; 3(1):vbad075. PubMed ID: 37424943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep centroid: a general deep cascade classifier for biomedical omics data classification.
    Xie K; Hou Y; Zhou X
    Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38305432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-omics: A Self-supervised Learning Framework for Multi-omics Cancer Data.
    Hashim S; Nandakumar K; Yaqub M
    Pac Symp Biocomput; 2023; 28():263-274. PubMed ID: 36540983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graph Neural Networks With Multiple Prior Knowledge for Multi-Omics Data Analysis.
    Xiao S; Lin H; Wang C; Wang S; Rajapakse JC
    IEEE J Biomed Health Inform; 2023 Sep; 27(9):4591-4600. PubMed ID: 37307177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.