These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 34207781)

  • 1. Evaluating the Impact of IMU Sensor Location and Walking Task on Accuracy of Gait Event Detection Algorithms.
    Niswander W; Kontson K
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34207781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the performance of 17 algorithms from a systematic review: Influence of sensor position, analysed variable and computational approach in gait timing estimation from IMU measurements.
    Pacini Panebianco G; Bisi MC; Stagni R; Fantozzi S
    Gait Posture; 2018 Oct; 66():76-82. PubMed ID: 30170137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of IMU-based gait event detection during curved walking and turning in older adults and Parkinson's Disease patients.
    Romijnders R; Warmerdam E; Hansen C; Welzel J; Schmidt G; Maetzler W
    J Neuroeng Rehabil; 2021 Feb; 18(1):28. PubMed ID: 33549105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Timing estimation for gait in water from inertial sensor measurements: Analysis of the performance of 17 algorithms.
    Pacini Panebianco G; Bisi MC; Stagni R; Fantozzi S
    Comput Methods Programs Biomed; 2020 Dec; 197():105703. PubMed ID: 32818913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A robust walking detection algorithm using a single foot-worn inertial sensor: validation in real-life settings.
    Prigent G; Aminian K; Cereatti A; Salis F; Bonci T; Scott K; Mazzà C; Alcock L; Del Din S; Gazit E; Hansen C; Paraschiv-Ionescu A;
    Med Biol Eng Comput; 2023 Sep; 61(9):2341-2352. PubMed ID: 37069465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gait event detection in laboratory and real life settings: Accuracy of ankle and waist sensor based methods.
    Storm FA; Buckley CJ; Mazzà C
    Gait Posture; 2016 Oct; 50():42-46. PubMed ID: 27567451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Challenges in Quantifying Heel-Lift During Spacesuit Gait.
    Boppana A; Priddy ST; Stirling L; Anderson AP
    Aerosp Med Hum Perform; 2022 Aug; 93(8):643-648. PubMed ID: 36050859
    [No Abstract]   [Full Text] [Related]  

  • 8. Wearable Inertial Gait Algorithms: Impact of Wear Location and Environment in Healthy and Parkinson's Populations.
    Celik Y; Stuart S; Woo WL; Godfrey A
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic identification of gait events during walking on uneven surfaces.
    Eckardt N; Kibele A
    Gait Posture; 2017 Feb; 52():83-86. PubMed ID: 27888695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of an IMU-based foot-ground contact detection (FGCD) algorithm.
    Kim M; Lee D
    Ergonomics; 2017 Mar; 60(3):384-403. PubMed ID: 27068742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the performance of accelerometer-based gait event detection algorithms in different real-world scenarios using the MAREA gait database.
    Khandelwal S; Wickström N
    Gait Posture; 2017 Jan; 51():84-90. PubMed ID: 27736735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time gait event detection for lower limb amputees using a single wearable sensor.
    Maqbool HF; Husman MA; Awad MI; Abouhossein A; Mehryar P; Iqbal N; Dehghani-Sanij AA
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5067-5070. PubMed ID: 28269407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Automatic Foot and Shank IMU Synchronization Algorithm: Proof-of-concept.
    Shabani S; Bourke AK; Muaremi A; Praestgaard J; O'Keeffe K; Argent R; Brom M; Scotti C; Caulfield B; Walsh LC
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():4210-4213. PubMed ID: 36083916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The development and concurrent validity of a real-time algorithm for temporal gait analysis using inertial measurement units.
    Allseits E; Lučarević J; Gailey R; Agrawal V; Gaunaurd I; Bennett C
    J Biomech; 2017 Apr; 55():27-33. PubMed ID: 28302315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing Bodyweight-Supported Treadmill Walking on Land and Underwater Using Foot-Worn Inertial Measurement Units and Machine Learning for Gait Event Detection.
    Song S; Fernandes NJ; Nordin AD
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37766002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inertial Gait Phase Detection for control of a drop foot stimulator Inertial sensing for gait phase detection.
    Kotiadis D; Hermens HJ; Veltink PH
    Med Eng Phys; 2010 May; 32(4):287-97. PubMed ID: 20153237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact-Aware Foot Motion Reconstruction and Ramp/Stair Detection Using One Foot-Mounted Inertial Measurement Unit.
    Wang Y; Fehr KH; Adamczyk PG
    Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38475012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unrestricted stride detection during stair climbing using IMUs.
    Siebers HL; Siroros N; Alrawashdeh W; Migliorini F; Tingart M; Eschweiler J; Betsch M
    Med Eng Phys; 2021 Jun; 92():10-17. PubMed ID: 34167703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of three kinematic gait event detection methods during overground and treadmill walking for individuals post stroke.
    French MA; Koller C; Arch ES
    J Biomech; 2020 Jan; 99():109481. PubMed ID: 31718818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Deep Learning Approach for Gait Event Detection from a Single Shank-Worn IMU: Validation in Healthy and Neurological Cohorts.
    Romijnders R; Warmerdam E; Hansen C; Schmidt G; Maetzler W
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.