These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 34207923)

  • 1. Motor Cortical Activation Assessment in Progressive Multiple Sclerosis Patients Enrolled in Gait Rehabilitation: A Secondary Analysis of the RAGTIME Trial Assisted by Functional Near-Infrared Spectroscopy.
    Lamberti N; Manfredini F; Baroni A; Crepaldi A; Lavezzi S; Basaglia N; Straudi S
    Diagnostics (Basel); 2021 Jun; 11(6):. PubMed ID: 34207923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional recovery in multiple sclerosis patients undergoing rehabilitation programs is associated with plasma levels of hemostasis inhibitors.
    Ziliotto N; Lamberti N; Manfredini F; Straudi S; Baroni M; Tisato V; Carantoni M; Secchiero P; Basaglia N; Marchetti G; Bernardi F
    Mult Scler Relat Disord; 2020 Sep; 44():102319. PubMed ID: 32593960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effectiveness of Robot-Assisted Gait Training versus conventional therapy on mobility in severely disabled progressIve MultiplE sclerosis patients (RAGTIME): study protocol for a randomized controlled trial.
    Straudi S; Manfredini F; Lamberti N; Zamboni P; Bernardi F; Marchetti G; Pinton P; Bonora M; Secchiero P; Tisato V; Volpato S; Basaglia N
    Trials; 2017 Feb; 18(1):88. PubMed ID: 28241776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robot-assisted gait training is not superior to intensive overground walking in multiple sclerosis with severe disability (the RAGTIME study): A randomized controlled trial.
    Straudi S; Manfredini F; Lamberti N; Martinuzzi C; Maietti E; Basaglia N
    Mult Scler; 2020 May; 26(6):716-724. PubMed ID: 30829117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased gait variability during robot-assisted walking is accompanied by increased sensorimotor brain activity in healthy people.
    Berger A; Horst F; Steinberg F; Thomas F; Müller-Eising C; Schöllhorn WI; Doppelmayr M
    J Neuroeng Rehabil; 2019 Dec; 16(1):161. PubMed ID: 31882008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rehabilitation Improves Mitochondrial Energetics in Progressive Multiple Sclerosis: The Significant Role of Robot-Assisted Gait Training and of the Personalized Intensity.
    Manfredini F; Straudi S; Lamberti N; Patergnani S; Tisato V; Secchiero P; Bernardi F; Ziliotto N; Marchetti G; Basaglia N; Bonora M; Pinton P
    Diagnostics (Basel); 2020 Oct; 10(10):. PubMed ID: 33080806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Best facilitated cortical activation during different stepping, treadmill, and robot-assisted walking training paradigms and speeds: A functional near-infrared spectroscopy neuroimaging study.
    Kim HY; Yang SP; Park GL; Kim EJ; You JS
    NeuroRehabilitation; 2016; 38(2):171-8. PubMed ID: 26923356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relation between Cortical Activation and Effort during Robot-Mediated Walking in Healthy People: A Functional Near-Infrared Spectroscopy Neuroimaging Study (fNIRS).
    Bonnal J; Monnet F; Le BT; Pila O; Grosmaire AG; Ozsancak C; Duret C; Auzou P
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35898041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current State and Future Prospects of EEG and fNIRS in Robot-Assisted Gait Rehabilitation: A Brief Review.
    Berger A; Horst F; Müller S; Steinberg F; Doppelmayr M
    Front Hum Neurosci; 2019; 13():172. PubMed ID: 31231200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robot-assisted gait training in multiple sclerosis: a pilot randomized trial.
    Beer S; Aschbacher B; Manoglou D; Gamper E; Kool J; Kesselring J
    Mult Scler; 2008 Mar; 14(2):231-6. PubMed ID: 17942510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of robot-assisted gait training in progressive multiple sclerosis: A randomized controlled trial.
    Straudi S; Fanciullacci C; Martinuzzi C; Pavarelli C; Rossi B; Chisari C; Basaglia N
    Mult Scler; 2016 Mar; 22(3):373-84. PubMed ID: 26658817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Clinical application of functional near-infrared spectroscopy in rehabilitation medicine].
    Mihara M; Yagura H; Hatakenaka M; Hattori N; Miyai I
    Brain Nerve; 2010 Feb; 62(2):125-32. PubMed ID: 20192032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetric cortical activation in healthy and hemiplegic individuals during walking: A functional near-infrared spectroscopy neuroimaging study.
    He X; Lei L; Yu G; Lin X; Sun Q; Chen S
    Front Neurol; 2022; 13():1044982. PubMed ID: 36761919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-selected speed gait training in Parkinson's disease: robot-assisted gait training with virtual reality versus gait training on the ground.
    Fundarò C; Maestri R; Ferriero G; Chimento P; Taveggia G; Casale R
    Eur J Phys Rehabil Med; 2019 Aug; 55(4):456-462. PubMed ID: 30370751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robot-assisted gait training in multiple sclerosis patients: a randomized trial.
    Schwartz I; Sajin A; Moreh E; Fisher I; Neeb M; Forest A; Vaknin-Dembinsky A; Karusis D; Meiner Z
    Mult Scler; 2012 Jun; 18(6):881-90. PubMed ID: 22146609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cortical control of normal gait and precision stepping: an fNIRS study.
    Koenraadt KL; Roelofsen EG; Duysens J; Keijsers NL
    Neuroimage; 2014 Jan; 85 Pt 1():415-22. PubMed ID: 23631980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robotic gait training in multiple sclerosis rehabilitation: Can virtual reality make the difference? Findings from a randomized controlled trial.
    Calabrò RS; Russo M; Naro A; De Luca R; Leo A; Tomasello P; Molonia F; Dattola V; Bramanti A; Bramanti P
    J Neurol Sci; 2017 Jun; 377():25-30. PubMed ID: 28477702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. What is the impact of robotic rehabilitation on balance and gait outcomes in people with multiple sclerosis? A systematic review of randomized control trials.
    Bowman T; Gervasoni E; Amico AP; Antenucci R; Benanti P; Boldrini P; Bonaiuti D; Burini A; Castelli E; Draicchio F; Falabella V; Galeri S; Gimigliano F; Grigioni M; Mazzon S; Mazzoleni S; Mestanza Mattos FG; Molteni F; Morone G; Petrarca M; Picelli A; Posteraro F; Senatore M; Turchetti G; Crea S; Cattaneo D; Carrozza MC;
    Eur J Phys Rehabil Med; 2021 Apr; 57(2):246-253. PubMed ID: 33541044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of robot-assisted gait training in patients with Parkinson's disease: study protocol for a randomized controlled trial.
    Kang MG; Yun SJ; Shin HI; Kim E; Lee HH; Oh BM; Seo HG
    Trials; 2019 Jan; 20(1):15. PubMed ID: 30616685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of Functional Cortical Plasticity in Children with Cerebral Palsy Associated to Robotic-Assisted Gait Training: An fNIRS Study.
    Perpetuini D; Russo EF; Cardone D; Palmieri R; Filippini C; Tritto M; Pellicano F; De Santis GP; Calabrò RS; Merla A; Filoni S
    J Clin Med; 2022 Nov; 11(22):. PubMed ID: 36431267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.