These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 34207949)
21. A guide to: generation and design of nanobodies. Muyldermans S FEBS J; 2021 Apr; 288(7):2084-2102. PubMed ID: 32780549 [TBL] [Abstract][Full Text] [Related]
22. Nanobody‑horseradish peroxidase and -EGFP fusions as reagents to detect porcine parvovirus in the immunoassays. Lu Q; Li X; Zhao J; Zhu J; Luo Y; Duan H; Ji P; Wang K; Liu B; Wang X; Fan W; Sun Y; Zhou EM; Zhao Q J Nanobiotechnology; 2020 Jan; 18(1):7. PubMed ID: 31910833 [TBL] [Abstract][Full Text] [Related]
23. High Expression Achievement of Active and Robust Anti-β2 microglobulin Nanobodies via Li D; Ji F; Huang C; Jia L Molecules; 2019 Aug; 24(16):. PubMed ID: 31394739 [TBL] [Abstract][Full Text] [Related]
24. Legomedicine-A Versatile Chemo-Enzymatic Approach for the Preparation of Targeted Dual-Labeled Llama Antibody-Nanoparticle Conjugates. van Lith SA; van Duijnhoven SM; Navis AC; Leenders WP; Dolk E; Wennink JW; van Nostrum CF; van Hest JC Bioconjug Chem; 2017 Feb; 28(2):539-548. PubMed ID: 28045502 [TBL] [Abstract][Full Text] [Related]
26. Use of camel single-domain antibodies for the diagnosis and treatment of zoonotic diseases. Lafaye P; Li T Comp Immunol Microbiol Infect Dis; 2018 Oct; 60():17-22. PubMed ID: 30396425 [TBL] [Abstract][Full Text] [Related]
27. Physicochemical improvement of rabbit derived single-domain antibodies by substitutions with amino acids conserved in camelid antibodies. Shinozaki N; Hashimoto R; Noda M; Uchiyama S J Biosci Bioeng; 2018 Jun; 125(6):654-661. PubMed ID: 29398547 [TBL] [Abstract][Full Text] [Related]
28. Deoxynivalenol-mimic nanobody isolated from a naïve phage display nanobody library and its application in immunoassay. Qiu YL; He QH; Xu Y; Bhunia AK; Tu Z; Chen B; Liu YY Anal Chim Acta; 2015 Aug; 887():201-208. PubMed ID: 26320803 [TBL] [Abstract][Full Text] [Related]
29. Perspectives for the Development of CD38-Specific Heavy Chain Antibodies as Therapeutics for Multiple Myeloma. Bannas P; Koch-Nolte F Front Immunol; 2018; 9():2559. PubMed ID: 30459772 [TBL] [Abstract][Full Text] [Related]
30. Identification of Useful Nanobodies by Phage Display of Immune Single Domain Libraries Derived from Camelid Heavy Chain Antibodies. Romao E; Morales-Yanez F; Hu Y; Crauwels M; De Pauw P; Hassanzadeh GG; Devoogdt N; Ackaert C; Vincke C; Muyldermans S Curr Pharm Des; 2016; 22(43):6500-6518. PubMed ID: 27669966 [TBL] [Abstract][Full Text] [Related]
31. VHH characterization.Recombinant VHHs: Production, characterization and affinity. Chabrol E; Stojko J; Nicolas A; Botzanowski T; Fould B; Antoine M; Cianférani S; Ferry G; Boutin JA Anal Biochem; 2020 Jan; 589():113491. PubMed ID: 31676284 [TBL] [Abstract][Full Text] [Related]
32. Oligoclonal selection of nanobodies targeting vascular endothelial growth factor. Ahadi M; Ghasemian H; Behdani M; Kazemi-Lomedasht F J Immunotoxicol; 2019 Dec; 16(1):34-42. PubMed ID: 30409071 [TBL] [Abstract][Full Text] [Related]
33. Structure and development of single domain antibodies as modules for therapeutics and diagnostics. Hoey RJ; Eom H; Horn JR Exp Biol Med (Maywood); 2019 Dec; 244(17):1568-1576. PubMed ID: 31594404 [TBL] [Abstract][Full Text] [Related]
34. Backbone assignment, secondary structure and protein A binding of an isolated, human antibody VH domain. Riechmann L; Davies J J Biomol NMR; 1995 Sep; 6(2):141-52. PubMed ID: 8589603 [TBL] [Abstract][Full Text] [Related]
35. Generation, expression and utilization of single-domain antibodies for in vivo protein localization and manipulation in sea urchin embryos. Schrankel CS; Gökirmak T; Lee CW; Chang G; Hamdoun A Methods Cell Biol; 2019; 151():353-376. PubMed ID: 30948018 [TBL] [Abstract][Full Text] [Related]
36. Nanobody-based CD38-specific heavy chain antibodies induce killing of multiple myeloma and other hematological malignancies. Schriewer L; Schütze K; Petry K; Hambach J; Fumey W; Koenigsdorf J; Baum N; Menzel S; Rissiek B; Riecken K; Fehse B; Röckendorf JL; Schmid J; Albrecht B; Pinnschmidt H; Ayuk F; Kröger N; Binder M; Schuch G; Hansen T; Haag F; Adam G; Koch-Nolte F; Bannas P Theranostics; 2020; 10(6):2645-2658. PubMed ID: 32194826 [No Abstract] [Full Text] [Related]
37. Nanobodies and Nanobody-Based Human Heavy Chain Antibodies As Antitumor Therapeutics. Bannas P; Hambach J; Koch-Nolte F Front Immunol; 2017; 8():1603. PubMed ID: 29213270 [TBL] [Abstract][Full Text] [Related]
38. Effect of Humanizing Mutations on the Stability of the Llama Single-Domain Variable Region. Soler MA; Medagli B; Wang J; Oloketuyi S; Bajc G; Huang H; Fortuna S; de Marco A Biomolecules; 2021 Jan; 11(2):. PubMed ID: 33530572 [TBL] [Abstract][Full Text] [Related]
39. Nanobodies: The "Magic Bullets" in therapeutics, drug delivery and diagnostics. Mir MA; Mehraj U; Sheikh BA; Hamdani SS Hum Antibodies; 2020; 28(1):29-51. PubMed ID: 31322555 [TBL] [Abstract][Full Text] [Related]
40. Solid-state NMR yields structural constraints on the V3 loop from HIV-1 Gp120 bound to the 447-52D antibody Fv fragment. Sharpe S; Kessler N; Anglister JA; Yau WM; Tycko R J Am Chem Soc; 2004 Apr; 126(15):4979-90. PubMed ID: 15080704 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]