These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 34208291)
21. Iterative Learning Control for a Soft Exoskeleton with Hip and Knee Joint Assistance. Chen C; Zhang Y; Li Y; Wang Z; Liu Y; Cao W; Wu X Sensors (Basel); 2020 Aug; 20(15):. PubMed ID: 32759646 [TBL] [Abstract][Full Text] [Related]
22. Model-based control for exoskeletons with series elastic actuators evaluated on sit-to-stand movements. Vantilt J; Tanghe K; Afschrift M; Bruijnes AKBD; Junius K; Geeroms J; Aertbeliën E; De Groote F; Lefeber D; Jonkers I; De Schutter J J Neuroeng Rehabil; 2019 Jun; 16(1):65. PubMed ID: 31159874 [TBL] [Abstract][Full Text] [Related]
23. Characterizing the relationship between peak assistance torque and metabolic cost reduction during running with ankle exoskeletons. Miller DE; Tan GR; Farina EM; Sheets-Singer AL; Collins SH J Neuroeng Rehabil; 2022 May; 19(1):46. PubMed ID: 35549977 [TBL] [Abstract][Full Text] [Related]
24. Design and analysis of a passive exoskeleton with its hip joint energy-storage. Hu S; Chen W; Xiong X; Sun X; He C Proc Inst Mech Eng H; 2023 Sep; 237(9):1039-1051. PubMed ID: 37571990 [TBL] [Abstract][Full Text] [Related]
25. Design of a Low Profile, Unpowered Ankle Exoskeleton That Fits Under Clothes: Overcoming Practical Barriers to Widespread Societal Adoption. Yandell MB; Tacca JR; Zelik KE IEEE Trans Neural Syst Rehabil Eng; 2019 Apr; 27(4):712-723. PubMed ID: 30872237 [TBL] [Abstract][Full Text] [Related]
26. Functional Evaluation of a Force Sensor-Controlled Upper-Limb Power-Assisted Exoskeleton with High Backdrivability. Liu C; Liang H; Ueda N; Li P; Fujimoto Y; Zhu C Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33182271 [TBL] [Abstract][Full Text] [Related]
27. Development and Validation of a Self-Aligning Knee Exoskeleton With Hip Rotation Capability. Li G; Liang X; Lu H; Su T; Hou ZG IEEE Trans Neural Syst Rehabil Eng; 2024; 32():472-481. PubMed ID: 38227411 [TBL] [Abstract][Full Text] [Related]
28. An assistance approach for a powered knee exoskeleton during level walking and the effects on metabolic cost. Jang J; Lim B; Shim Y Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6216-6219. PubMed ID: 31947263 [TBL] [Abstract][Full Text] [Related]
29. Preliminary design and development of a low-cost lower-limb exoskeleton system for paediatric rehabilitation. Narayan J; Kumar Dwivedy S Proc Inst Mech Eng H; 2021 May; 235(5):530-545. PubMed ID: 33588634 [TBL] [Abstract][Full Text] [Related]
30. Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Witte KA; Fiers P; Sheets-Singer AL; Collins SH Sci Robot; 2020 Mar; 5(40):. PubMed ID: 33022600 [TBL] [Abstract][Full Text] [Related]
31. Knee Compliance Reduces Peak Swing Phase Collision Forces in a Lower-Limb Exoskeleton Leg: A Test Bench Evaluation. Schrade SO; Menner M; Shirota C; Winiger P; Stutz A; Zeilinger MN; Lambercy O; Gassert R IEEE Trans Biomed Eng; 2021 Feb; 68(2):535-544. PubMed ID: 32746051 [TBL] [Abstract][Full Text] [Related]
32. Biomechanical Comparison of Assistance Strategies Using a Bilateral Robotic Knee Exoskeleton. Lee D; McLain B; Kang I; Young A IEEE Trans Biomed Eng; 2021 Sep; 68(9):2870-2879. PubMed ID: 34033531 [TBL] [Abstract][Full Text] [Related]
33. A Biomechanical Comparison of Proportional Electromyography Control to Biological Torque Control Using a Powered Hip Exoskeleton. Young AJ; Gannon H; Ferris DP Front Bioeng Biotechnol; 2017; 5():37. PubMed ID: 28713810 [TBL] [Abstract][Full Text] [Related]
34. Heuristic-Based Ankle Exoskeleton Control for Co-Adaptive Assistance of Human Locomotion. Jackson RW; Collins SH IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2059-2069. PubMed ID: 31425120 [TBL] [Abstract][Full Text] [Related]
35. Design of the Clutched Variable Parallel Elastic Actuator (CVPEA) for Lower Limb Exoskeletons. Li Y; Li Z; Penzlin B; Tang Z; Liu Y; Guan X; Ji L; Leonhardt S Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4436-4439. PubMed ID: 31946850 [TBL] [Abstract][Full Text] [Related]
36. Design of a Multi-Joint Passive Exoskeleton for Vertical Jumping Using Optimal Control. Ostraich B; Riemer R IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2815-2823. PubMed ID: 36155480 [TBL] [Abstract][Full Text] [Related]
37. BioMot exoskeleton - Towards a smart wearable robot for symbiotic human-robot interaction. Bacek T; Moltedo M; Langlois K; Prieto GA; Sanchez-Villamanan MC; Gonzalez-Vargas J; Vanderborght B; Lefeber D; Moreno JC IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1666-1671. PubMed ID: 28814059 [TBL] [Abstract][Full Text] [Related]
38. Estimating upper extremity joint loads of persons with spinal cord injury walking with a lower extremity powered exoskeleton and forearm crutches. Smith AJJ; Fournier BN; Nantel J; Lemaire ED J Biomech; 2020 Jun; 107():109835. PubMed ID: 32517865 [TBL] [Abstract][Full Text] [Related]
39. Design of an Unpowered Ankle-Foot Exoskeleton Used for Walking Assistance. Liu L; Wei W; Zheng K; Diao Y; Wang Z; Li G; Zhao G Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4501-4504. PubMed ID: 34892218 [TBL] [Abstract][Full Text] [Related]