These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 34208309)

  • 1.
    Mahajan S; Gabrys J; Armitage J
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34208309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Personal Exposure Estimates via Portable and Wireless Sensing and Reporting of Particulate Pollution.
    Agrawaal H; Jones C; Thompson JE
    Int J Environ Res Public Health; 2020 Jan; 17(3):. PubMed ID: 32013139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GeoAir-A Novel Portable, GPS-Enabled, Low-Cost Air-Pollution Sensor: Design Strategies to Facilitate Citizen Science Research and Geospatial Assessments of Personal Exposure.
    Park YM; Sousan S; Streuber D; Zhao K
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34071590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anomaly Detection and Repairing for Improving Air Quality Monitoring.
    Rollo F; Bachechi C; Po L
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance evaluation of ozone and particulate matter sensors.
    DeWitt HL; Crow WL; Flowers B
    J Air Waste Manag Assoc; 2020 Mar; 70(3):292-306. PubMed ID: 31961265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding social and behavioral drivers and impacts of air quality sensor use.
    Hubbell BJ; Kaufman A; Rivers L; Schulte K; Hagler G; Clougherty J; Cascio W; Costa D
    Sci Total Environ; 2018 Apr; 621():886-894. PubMed ID: 29216596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards the Development of a Sensor Educational Toolkit to Support Community and Citizen Science.
    Collier-Oxandale A; Papapostolou V; Feenstra B; Der Boghossian B; Polidori A
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensors and systems for air quality assessment monitoring and management: A review.
    Singh D; Dahiya M; Kumar R; Nanda C
    J Environ Manage; 2021 Jul; 289():112510. PubMed ID: 33827002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. IoT-Enabled Wireless Sensor Networks for Air Pollution Monitoring with Extended Fractional-Order Kalman Filtering.
    Metia S; Nguyen HAD; Ha QP
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving accuracy of air pollution exposure measurements: Statistical correction of a municipal low-cost airborne particulate matter sensor network.
    Considine EM; Reid CE; Ogletree MR; Dye T
    Environ Pollut; 2021 Jan; 268(Pt B):115833. PubMed ID: 33120139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implementation of IoT-Based Air Quality Monitoring System for Investigating Particulate Matter (PM
    Jo JH; Jo B; Kim JH; Choi I
    Int J Environ Res Public Health; 2020 Jul; 17(15):. PubMed ID: 32731501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A land use regression model using machine learning and locally developed low cost particulate matter sensors in Uganda.
    Coker ES; Amegah AK; Mwebaze E; Ssematimba J; Bainomugisha E
    Environ Res; 2021 Aug; 199():111352. PubMed ID: 34043968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current advances and future challenges of AIoT applications in particulate matters (PM) monitoring and control.
    Yang CT; Chen HW; Chang EJ; Kristiani E; Nguyen KLP; Chang JS
    J Hazard Mater; 2021 Oct; 419():126442. PubMed ID: 34198222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advantages and challenges of the implementation of a low-cost particulate matter monitoring system as a decision-making tool.
    Caquilpán P V; Aros G G; Elgueta A S; Díaz S R; Sepúlveda K G; Sierralta J C
    Environ Monit Assess; 2019 Oct; 191(11):667. PubMed ID: 31650385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of PM
    Kanabkaew T; Mekbungwan P; Raksakietisak S; Kanchanasut K
    Environ Pollut; 2019 Sep; 252(Pt A):543-552. PubMed ID: 31170566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The London low emission zone baseline study.
    Kelly F; Armstrong B; Atkinson R; Anderson HR; Barratt B; Beevers S; Cook D; Green D; Derwent D; Mudway I; Wilkinson P;
    Res Rep Health Eff Inst; 2011 Nov; (163):3-79. PubMed ID: 22315924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of a new low-cost particle sensor as an internet-of-things device for outdoor air quality monitoring.
    Roberts FA; Van Valkinburgh K; Green A; Post CJ; Mikhailova EA; Commodore S; Pearce JL; Metcalf AR
    J Air Waste Manag Assoc; 2022 Nov; 72(11):1219-1230. PubMed ID: 35759771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coalescing IoT and Wi-Fi technologies for an optimized approach in urban route planning.
    Deep B; Mathur I; Joshi N
    Environ Sci Pollut Res Int; 2020 Sep; 27(27):34434-34441. PubMed ID: 32557071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The improvement of spatial-temporal resolution of PM
    Lin YC; Chi WJ; Lin YQ
    Environ Int; 2020 Jan; 134():105305. PubMed ID: 31739136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysing the performance of low-cost air quality sensors, their drivers, relative benefits and calibration in cities-a case study in Sheffield.
    Munir S; Mayfield M; Coca D; Jubb SA; Osammor O
    Environ Monit Assess; 2019 Jan; 191(2):94. PubMed ID: 30671683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.