These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34208583)

  • 1. High Q-Factor Hybrid Metamaterial Waveguide Multi-Fano Resonance Sensor in the Visible Wavelength Range.
    Yang H; Chen Y; Liu M; Xiao G; Luo Y; Liu H; Li J; Yuan L
    Nanomaterials (Basel); 2021 Jun; 11(6):. PubMed ID: 34208583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fano-Resonance in Hybrid Metal-Graphene Metamaterial and Its Application as Mid-Infrared Plasmonic Sensor.
    Zhang J; Hong Q; Zou J; He Y; Yuan X; Zhu Z; Qin S
    Micromachines (Basel); 2020 Mar; 11(3):. PubMed ID: 32143457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient Excitation and Tuning of Multi-Fano Resonances with High Q-Factor in All-Dielectric Metasurfaces.
    Wang Y; Zhou C; Huo Y; Cui P; Song M; Liu T; Zhao C; Liao Z; Zhang Z; Xie Y
    Nanomaterials (Basel); 2022 Jul; 12(13):. PubMed ID: 35808128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultra-high
    Deng K; Gao Y; Gao Y; Wu T
    RSC Adv; 2024 Apr; 14(19):13646-13653. PubMed ID: 38665500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fano resonance sensing based on coupling of a sub-wavelength grating and an all-dielectric multilayer film under angle modulation.
    Chen Y; Zhou X; Xu Y; Xiao C; Zhu Q
    Appl Opt; 2021 Apr; 60(10):2902-2906. PubMed ID: 33798171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Q Fano Resonance in Terahertz Frequency Based on an Asymmetric Metamaterial Resonator.
    Xie Q; Dong GX; Wang BX; Huang WQ
    Nanoscale Res Lett; 2018 Sep; 13(1):294. PubMed ID: 30242559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An all-dielectric metasurface based on Fano resonance with tunable dual-peak insensitive polarization for high-performance refractive index sensing.
    Liu Z; Du J; Chi Z; Cong H; Wang B
    Phys Chem Chem Phys; 2023 Oct; 25(41):28094-28103. PubMed ID: 37818608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fano-Resonant Hybrid Metamaterial for Enhanced Nonlinear Tunability and Hysteresis Behavior.
    Fan Y; He X; Zhang F; Cai W; Li C; Fu Q; Sydorchuk NV; Prosvirnin SL
    Research (Wash D C); 2021; 2021():9754083. PubMed ID: 34485916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linearly Tunable Fano Resonance Modes in a Plasmonic Nanostructure with a Waveguide Loaded with Two Rectangular Cavities Coupled by a Circular Cavity.
    Wang Q; Ouyang Z; Sun Y; Lin M; Liu Q
    Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31052439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra Narrow Dual-Band Perfect Absorber Based on a Dielectric-Dielectric-Metal Three-Layer Film Material.
    Liu B; Wu P; Zhu H; Lv L
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple toroidal dipole Fano resonances from quasi-bound states in the continuum in an all-dielectric metasurface.
    Sun F; Fan X; Fang W; Zhao J; Xiao W; Li C; Wei X; Tao J; Wang Y; Kumar S
    Opt Express; 2024 May; 32(10):18087-18098. PubMed ID: 38858973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quasi-TPPs/Fano resonance systems based on an MDM waveguide structure and its sensing application.
    Lu Y; Zhou Y; Cheng D; Li M; Xu Y; Xu J; Wang J
    Appl Opt; 2023 Nov; 62(33):8741-8748. PubMed ID: 38038019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multimode Fano Resonances Sensing Based on a Non-Through MIM Waveguide with a Square Split-Ring Resonance Cavity.
    Chen J; Lian X; Zhao M; Xie C
    Biosensors (Basel); 2022 May; 12(5):. PubMed ID: 35624607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Actively Tunable Fano Resonance Based on a Bowtie-Shaped Black Phosphorus Terahertz Sensor.
    Huang Y; Liu Y; Shao Y; Han G; Zhang J; Hao Y
    Nanomaterials (Basel); 2021 May; 11(6):. PubMed ID: 34072566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Q Fano resonances in all-dielectric metastructures for enhanced optical biosensing applications.
    Chen H; Fan X; Fang W; Zhang B; Cao S; Sun Q; Wang D; Niu H; Li C; Wei X; Bai C; Kumar S
    Biomed Opt Express; 2024 Jan; 15(1):294-305. PubMed ID: 38223189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable compact nanosensor based on Fano resonance in a plasmonic waveguide system.
    Ren X; Ren K; Cai Y
    Appl Opt; 2017 Nov; 56(31):H1-H9. PubMed ID: 29091660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials.
    Cao W; Singh R; Al-Naib IA; He M; Taylor AJ; Zhang W
    Opt Lett; 2012 Aug; 37(16):3366-8. PubMed ID: 23381259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A triple Fano resonance Si-graphene metasurface for multi-channel tunable ultra-narrow band sensing.
    Liu J; Dai H; Ju J; Cheng K
    Phys Chem Chem Phys; 2024 Mar; 26(12):9462-9474. PubMed ID: 38446428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-tunable Fano resonance in metal-dielectric multilayer structures.
    Hayashi S; Nesterenko DV; Rahmouni A; Ishitobi H; Inouye Y; Kawata S; Sekkat Z
    Sci Rep; 2016 Sep; 6():33144. PubMed ID: 27623741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metasurface generated polarization insensitive Fano resonance for high-performance refractive index sensing.
    Liu H; Zheng L; Ma P; Zhong Y; Liu B; Chen X; Liu H
    Opt Express; 2019 Apr; 27(9):13252-13262. PubMed ID: 31052853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.