These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34208583)

  • 21. Tunable Nanosensor Based on Fano Resonances Created by Changing the Deviation Angle of the Metal Core in a Plasmonic Cavity.
    Wang Q; Ouyang Z; Sun Y; Lin M; Liu Q; Zheng G; Fan J
    Sensors (Basel); 2018 Mar; 18(4):. PubMed ID: 29596341
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tailoring the negative-refractive-index metamaterials composed of semiconductor-metal-semiconductor gold ring/disk cavity heptamers to support strong Fano resonances in the visible spectrum.
    Ahmadivand A; Pala N
    J Opt Soc Am A Opt Image Sci Vis; 2015 Feb; 32(2):204-12. PubMed ID: 26366591
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design of Quad-Band Terahertz Metamaterial Absorber Using a Perforated Rectangular Resonator for Sensing Applications.
    Xie Q; Dong G; Wang BX; Huang WQ
    Nanoscale Res Lett; 2018 May; 13(1):137. PubMed ID: 29740712
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characteristics of multiple Fano resonances in waveguide-coupled surface plasmon resonance sensors based on waveguide theory.
    Yang L; Wang J; Yang LZ; Hu ZD; Wu X; Zheng G
    Sci Rep; 2018 Feb; 8(1):2560. PubMed ID: 29416096
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fano resonance based on D-shaped waveguide structure and its application for human hemoglobin detection.
    Liu X; Li J; Chen J; Rohimah S; Tian H; Wang J
    Appl Opt; 2020 Jul; 59(21):6424-6430. PubMed ID: 32749309
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multiple Fano resonances on the metastructure of all-dielectric nanopore arrays excited by breaking two-different-dimensional symmetries.
    Bi L; Fan X; Li C; Zhao H; Fang W; Niu H; Bai C; Wei X
    Heliyon; 2023 Jan; 9(1):e12990. PubMed ID: 36820188
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plasmonic Spectral Splitting in Ring/Rod Metasurface.
    Muhammad N; Khan AD; Deng ZL; Khan K; Yadav A; Liu Q; Ouyang Z
    Nanomaterials (Basel); 2017 Nov; 7(11):. PubMed ID: 29156591
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Refractive Index and Alcohol-Concentration Sensor Based on Fano Phenomenon.
    Wang Q; Yan S; Liu J; Zhang X; Shen L; Liu P; Cui Y; Li T; Ren Y
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365895
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fano Resonance in an Asymmetric MIM Waveguide Structure and Its Application in a Refractive Index Nanosensor.
    Wang M; Zhang M; Wang Y; Zhao R; Yan S
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30781360
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasmonic Multichannel Refractive Index Sensor Based on Subwavelength Tangent-Ring Metal⁻Insulator⁻Metal Waveguide.
    Guo Z; Wen K; Hu Q; Lai W; Lin J; Fang Y
    Sensors (Basel); 2018 Apr; 18(5):. PubMed ID: 29701713
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electromagnetically induced transparency-based metal dielectric metamaterial and its terahertz sensing application.
    Reena R; Kalra Y; Kumar A
    Appl Opt; 2021 Dec; 60(34):10610-10616. PubMed ID: 35200923
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-quality-factor multiple Fano resonances for refractive index sensing.
    Zhang Y; Liu W; Li Z; Li Z; Cheng H; Chen S; Tian J
    Opt Lett; 2018 Apr; 43(8):1842-1845. PubMed ID: 29652379
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tunable Fano resonances of a graphene/waveguide hybrid structure at mid-infrared wavelength.
    Guo J; Jiang L; Dai X; Xiang Y
    Opt Express; 2016 Mar; 24(5):4740-4748. PubMed ID: 29092303
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High Q-factor Fano resonances based on a permittivity-asymmetric dielectric pea-shaped cylinder.
    Pang J; Fang W; Guo H; Wang T; Fan X; Niu H; Huang Y; Bai C
    Appl Opt; 2023 Nov; 62(31):8381-8389. PubMed ID: 38037943
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Active Electromagnetically Induced Transparency Effect in Graphene-Dielectric Hybrid Metamaterial and Its High-Performance Sensor Application.
    Gao F; Yuan P; Gao S; Deng J; Sun Z; Jin G; Zeng G; Yan B
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443863
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Emission wavelength tuning of fluorescence by fine structural control of optical metamaterials with Fano resonance.
    Moritake Y; Kanamori Y; Hane K
    Sci Rep; 2016 Sep; 6():33208. PubMed ID: 27622503
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Universal behaviour of high-
    Lim WX; Singh R
    Nano Converg; 2018; 5(1):5. PubMed ID: 29568722
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tunable high Q-factor terahertz complementary graphene metamaterial.
    He X; Lin F; Liu F; Shi W
    Nanotechnology; 2018 Nov; 29(48):485205. PubMed ID: 30207547
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High Quality Plasmonic Sensors Based on Fano Resonances Created through Cascading Double Asymmetric Cavities.
    Zhang X; Shao M; Zeng X
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27763539
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Double Narrow Fano Resonances via Diffraction Coupling of Magnetic Plasmon Resonances in Embedded 3D Metamaterials for High-Quality Sensing.
    Hu H; Lu X; Huang J; Chen K; Su J; Yan Z; Tang C; Cai P
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947710
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.