BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 34208740)

  • 1. Structural Analysis of a Genetically Encoded FRET Biosensor by SAXS and MD Simulations.
    Reinartz I; Sarter M; Otten J; Höfig H; Pohl M; Schug A; Stadler AM; Fitter J
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34208740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-Molecule Studies on a FRET Biosensor: Lessons from a Comparison of Fluorescent Protein Equipped versus Dye-Labeled Species.
    Höfig H; Cerminara M; Ritter I; Schöne A; Pohl M; Steffen V; Walter J; Vergara Dal Pont I; Katranidis A; Fitter J
    Molecules; 2018 Nov; 23(12):. PubMed ID: 30486450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational analysis of a genetically encoded FRET biosensor by SAXS.
    Mertens HD; Piljić A; Schultz C; Svergun DI
    Biophys J; 2012 Jun; 102(12):2866-75. PubMed ID: 22735537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetically Encoded Förster Resonance Energy Transfer-Based Biosensors Studied on the Single-Molecule Level.
    Höfig H; Otten J; Steffen V; Pohl M; Boersma AJ; Fitter J
    ACS Sens; 2018 Aug; 3(8):1462-1470. PubMed ID: 29979038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic tuning of FRET in a green fluorescent protein biosensor.
    Trigo-Mourino P; Thestrup T; Griesbeck O; Griesinger C; Becker S
    Sci Adv; 2019 Aug; 5(8):eaaw4988. PubMed ID: 31457088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzyme-Triggered Dissociation of a FRET-Based Protein Biosensor Monitored by Synchrotron SAXS.
    Faccio G; Salentinig S
    Biophys J; 2017 Oct; 113(8):1731-1737. PubMed ID: 29045867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Expanded Conformation of an Antibody Fab Region by X-Ray Scattering, Molecular Dynamics, and smFRET Identifies an Aggregation Mechanism.
    Codina N; Hilton D; Zhang C; Chakroun N; Ahmad SS; Perkins SJ; Dalby PA
    J Mol Biol; 2019 Mar; 431(7):1409-1425. PubMed ID: 30776431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid Methods for Modeling Protein Structures Using Molecular Dynamics Simulations and Small-Angle X-Ray Scattering Data.
    Ekimoto T; Ikeguchi M
    Adv Exp Med Biol; 2018; 1105():237-258. PubMed ID: 30617833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Booster, a Red-Shifted Genetically Encoded Förster Resonance Energy Transfer (FRET) Biosensor Compatible with Cyan Fluorescent Protein/Yellow Fluorescent Protein-Based FRET Biosensors and Blue Light-Responsive Optogenetic Tools.
    Watabe T; Terai K; Sumiyama K; Matsuda M
    ACS Sens; 2020 Mar; 5(3):719-730. PubMed ID: 32101394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Förster resonance energy transfer biosensors for fluorescence and time-gated luminescence analysis of rac1 activity.
    Pham H; Hoseini Soflaee M; Karginov AV; Miller LW
    Sci Rep; 2022 Mar; 12(1):5291. PubMed ID: 35351946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetically Encoded Biosensors Based on Fluorescent Proteins.
    Kim H; Ju J; Lee HN; Chun H; Seong J
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33504068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SH2 Domain-Based FRET Biosensor for Measuring BCR-ABL Activity in Living CML Cells.
    Fujioka M; Asano Y; Nakada S; Ohba Y
    Methods Mol Biol; 2017; 1555():513-534. PubMed ID: 28092053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two Decades of Genetically Encoded Biosensors Based on Förster Resonance Energy Transfer.
    Terai K; Imanishi A; Li C; Matsuda M
    Cell Struct Funct; 2019 Nov; 44(2):153-169. PubMed ID: 30905922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction and optimization of a family of genetically encoded metabolite sensors by semirational protein engineering.
    Deuschle K; Okumoto S; Fehr M; Looger LL; Kozhukh L; Frommer WB
    Protein Sci; 2005 Sep; 14(9):2304-14. PubMed ID: 16131659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dimension conversion and scaling of disordered protein chains.
    Li M; Sun T; Jin F; Yu D; Liu Z
    Mol Biosyst; 2016 Aug; 12(9):2932-40. PubMed ID: 27440558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Converting a binding protein into a biosensing conformational switch using protein fragment exchange.
    Zheng H; Bi J; Krendel M; Loh SN
    Biochemistry; 2014 Sep; 53(34):5505-14. PubMed ID: 25084233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Red-Shifted FRET Biosensors for High-Throughput Fluorescence Lifetime Screening.
    Schaaf TM; Li A; Grant BD; Peterson K; Yuen S; Bawaskar P; Kleinboehl E; Li J; Thomas DD; Gillispie GD
    Biosensors (Basel); 2018 Oct; 8(4):. PubMed ID: 30352972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Advances in Development of Genetically Encoded Fluorescent Sensors.
    Sanford L; Palmer A
    Methods Enzymol; 2017; 589():1-49. PubMed ID: 28336060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence depolarization dynamics of ionic strength sensors using time-resolved anisotropy.
    Aplin CP; Miller RC; Kay TM; Heikal AA; Boersma AJ; Sheets ED
    Biophys J; 2021 Apr; 120(8):1417-1430. PubMed ID: 33582140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Folding of Protein L with Implications for Collapse in the Denatured State Ensemble.
    Maity H; Reddy G
    J Am Chem Soc; 2016 Mar; 138(8):2609-16. PubMed ID: 26835789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.