These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 34209000)
1. Enhancement of Flame Retardancy and Mechanical Properties of Polylactic Acid with a Biodegradable Fire-Retardant Filler System Based on Bamboo Charcoal. Li W; Zhang L; Chai W; Yin N; Semple K; Li L; Zhang W; Dai C Polymers (Basel); 2021 Jun; 13(13):. PubMed ID: 34209000 [TBL] [Abstract][Full Text] [Related]
2. Intumescent-Grafted Bamboo Charcoal: A Natural Nontoxic Fire-Retardant Filler for Polylactic Acid (PLA) Composites. Zhang L; Chai W; Li W; Semple K; Yin N; Zhang W; Dai C ACS Omega; 2021 Oct; 6(41):26990-27006. PubMed ID: 34693119 [TBL] [Abstract][Full Text] [Related]
3. Development of Biodegradable Flame-Retardant Bamboo Charcoal Composites, Part I: Thermal and Elemental Analyses. Wang S; Zhang L; Semple K; Zhang M; Zhang W; Dai C Polymers (Basel); 2020 Sep; 12(10):. PubMed ID: 32992551 [TBL] [Abstract][Full Text] [Related]
4. Effect of different amounts of bamboo charcoal on properties of biodegradable bamboo charcoal/polylactic acid composites. Zou D; Zheng X; Ye Y; Yan D; Xu H; Si S; Li X Int J Biol Macromol; 2022 Sep; 216():456-464. PubMed ID: 35809669 [TBL] [Abstract][Full Text] [Related]
5. Development of Biodegradable Flame-Retardant Bamboo Charcoal Composites, Part II: Thermal Degradation, Gas Phase, and Elemental Analyses. Wang S; Zhang L; Semple K; Zhang M; Zhang W; Dai C Polymers (Basel); 2020 Sep; 12(10):. PubMed ID: 32998464 [TBL] [Abstract][Full Text] [Related]
6. Full bio-based flame retardant towards multifunctional polylactic acid: Crystallization, flame retardant, antibacterial and enhanced mechanical properties. Wang Y; Gao J; Ma L; Ge H; Zhu G; Zhu Z Int J Biol Macromol; 2024 Nov; 280(Pt 2):135891. PubMed ID: 39307504 [TBL] [Abstract][Full Text] [Related]
7. Fabrication of Phytic Acid/Urea Co-Modified Bamboo Biochar and Its Application as Green Flame Retardant for Polylactic Acid Resins. Zhong J; Wang E; Sun Y; Yin N; Tian S; Ying W; Li W; Zhang W Polymers (Basel); 2023 Jan; 15(2):. PubMed ID: 36679241 [TBL] [Abstract][Full Text] [Related]
9. Synthesis of P-/N-Containing Bamboo-Activated Carbon toward Enhanced Thermal Stability and Flame Retardancy of Polylactic Acid. Yin N; Zhong J; Tian H; Zhou Z; Ying W; Dai J; Li W; Zhang W Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36234140 [TBL] [Abstract][Full Text] [Related]
10. Construction of carbon-based flame retardant composite with reinforced and toughened property and its application in polylactic acid. Xiao Y; Yang Y; Luo Q; Tang B; Guan J; Tian Q RSC Adv; 2022 Aug; 12(34):22236-22243. PubMed ID: 36043090 [TBL] [Abstract][Full Text] [Related]
11. The Effects of a Macromolecular Charring Agent with Gas Phase and Condense Phase Synergistic Flame Retardant Capability on the Properties of PP/IFR Composites. Chen H; Wang J; Ni A; Ding A; Han X; Sun Z Materials (Basel); 2018 Jan; 11(1):. PubMed ID: 29324716 [TBL] [Abstract][Full Text] [Related]
12. Self-assembled biobased chitosan hybrid carrying N/P/B elements for polylactide with enhanced fire safety and mechanical properties. Cao X; Huang J; Tang Z; Tong Y; Yuen ACY; Zhao W; Huang Q; Li RKY; Wu W Int J Biol Macromol; 2023 May; 236():123947. PubMed ID: 36898460 [TBL] [Abstract][Full Text] [Related]
13. The Efficiency of Biobased Carbonization Agent and Intumescent Flame Retardant on Flame Retardancy of Biopolymer Composites and Investigation of their Melt-Spinnability. Maqsood M; Langensiepen F; Seide G Molecules; 2019 Apr; 24(8):. PubMed ID: 30999658 [TBL] [Abstract][Full Text] [Related]
14. The effect of chitosan on the flammability and thermal stability of polylactic acid/ammonium polyphosphate biocomposites. Chen C; Gu X; Jin X; Sun J; Zhang S Carbohydr Polym; 2017 Feb; 157():1586-1593. PubMed ID: 27987872 [TBL] [Abstract][Full Text] [Related]
15. Water Hyacinth Fiber as a Bio-Based Carbon Source for Intumescent Flame-Retardant Poly (Butylene Succinate) Composites. Suwanniroj A; Suppakarn N Polymers (Basel); 2023 Oct; 15(21):. PubMed ID: 37959891 [TBL] [Abstract][Full Text] [Related]
16. Preparation of γ-Divinyl-3-Aminopropyltriethoxysilane Modified Lignin and Its Application in Flame Retardant Poly(lactic acid). Song Y; Zong X; Wang N; Yan N; Shan X; Li J Materials (Basel); 2018 Aug; 11(9):. PubMed ID: 30135388 [TBL] [Abstract][Full Text] [Related]
17. Fully bio-based intumescent flame retardant hybrid: A green strategy towards reducing fire hazard and improving degradation of polylactic acid. Xu F; Ma W; Wang W; Wang H; An S; Zhu Z; Wang R Int J Biol Macromol; 2024 Jun; 269(Pt 1):131985. PubMed ID: 38692538 [TBL] [Abstract][Full Text] [Related]
18. Flame Retardancy and Toughness of Poly(Lactic Acid)/GNR/SiAHP Composites. Wu N; Yu J; Lang W; Ma X; Yang Y Polymers (Basel); 2019 Jul; 11(7):. PubMed ID: 31277216 [TBL] [Abstract][Full Text] [Related]
19. Green and economic flame retardant prepared by the one-step method for polylactic acid. Cheng H; Wu Y; Hsu W; Lin F; Wang S; Zeng J; Zhu Q; Song L Int J Biol Macromol; 2023 Dec; 253(Pt 7):127291. PubMed ID: 37806420 [TBL] [Abstract][Full Text] [Related]
20. Synergistic effect of stereo-complexation and interfacial compatibility in ammonium polyphosphate grafted polylactic acid fibers for simultaneously improved toughness and flame retardancy. Zheng S; Li W; Chen Y; Yang H; Cai Y; Wang Q; Wei Q Int J Biol Macromol; 2024 Mar; 261(Pt 2):129943. PubMed ID: 38311135 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]