These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 34209303)

  • 1. Fabrication of Ultranarrow Nanochannels with Ultrasmall Nanocomponents in Glass Substrates.
    Kamai H; Xu Y
    Micromachines (Basel); 2021 Jun; 12(7):. PubMed ID: 34209303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of nanofluidic biochips with nanochannels for applications in DNA analysis.
    Xia D; Yan J; Hou S
    Small; 2012 Sep; 8(18):2787-801. PubMed ID: 22778064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advanced Top-Down Fabrication for a Fused Silica Nanofluidic Device.
    Morikawa K; Kazoe Y; Takagi Y; Tsuyama Y; Pihosh Y; Tsukahara T; Kitamori T
    Micromachines (Basel); 2020 Nov; 11(11):. PubMed ID: 33182488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scalable integration of nano-, and microfluidics with hybrid two-photon lithography.
    Vanderpoorten O; Peter Q; Challa PK; Keyser UF; Baumberg J; Kaminski CF; Knowles TPJ
    Microsyst Nanoeng; 2019; 5():40. PubMed ID: 31636930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of all-transparent polymer-based and encapsulated nanofluidic devices using nano-indentation lithography.
    Wu C; Lin TG; Zhan Z; Li Y; Tung SCH; Tang WC; Li WJ
    Microsyst Nanoeng; 2017; 3():16084. PubMed ID: 31057852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colloidal lithography-based fabrication of highly-ordered nanofluidic channels with an ultra-high surface-to-volume ratio.
    Wang S; Liu Y; Ge P; Kan Q; Yu N; Wang J; Nan J; Ye S; Zhang J; Xu W; Yang B
    Lab Chip; 2018 Mar; 18(6):979-988. PubMed ID: 29485661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal-Free Fabrication of Fused Silica Extended Nanofluidic Channel to Remove Artifacts in Chemical Analysis.
    Morikawa K; Ohta R; Mawatari K; Kitamori T
    Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sub-60 nm nanofluidic channels fabricated by glass-glass bonding.
    Liao KP; Yao NK; Kuo TS
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2832-5. PubMed ID: 17946140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local nano-electrode fabrication utilizing nanofluidic and nano-electrochemical control.
    Morikawa K; Takeuchi T; Kitamori T
    Electrophoresis; 2024 Jul; ():. PubMed ID: 38962855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Femtoliter nanofluidic valve utilizing glass deformation.
    Kazoe Y; Pihosh Y; Takahashi H; Ohyama T; Sano H; Morikawa K; Mawatari K; Kitamori T
    Lab Chip; 2019 Apr; 19(9):1686-1694. PubMed ID: 30942790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Simple Low-Temperature Glass Bonding Process with Surface Activation by Oxygen Plasma for Micro/Nanofluidic Devices.
    Shoda K; Tanaka M; Mino K; Kazoe Y
    Micromachines (Basel); 2020 Aug; 11(9):. PubMed ID: 32854246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative characterization of liquids flowing in geometrically controlled sub-100 nm nanofluidic channels.
    Kazoe Y; Ikeda K; Mino K; Morikawa K; Mawatari K; Kitamori T
    Anal Sci; 2023 Jun; 39(6):779-784. PubMed ID: 36884162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-temperature direct bonding of glass nanofluidic chips using a two-step plasma surface activation process.
    Xu Y; Wang C; Dong Y; Li L; Jang K; Mawatari K; Suga T; Kitamori T
    Anal Bioanal Chem; 2012 Jan; 402(3):1011-8. PubMed ID: 22134493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanofluidics: A New Arena for Materials Science.
    Xu Y
    Adv Mater; 2018 Jan; 30(3):. PubMed ID: 29094401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Review article: Fabrication of nanofluidic devices.
    Duan C; Wang W; Xie Q
    Biomicrofluidics; 2013 Mar; 7(2):26501. PubMed ID: 23573176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of two dimensional polyethylene terephthalate nanofluidic chip using hot embossing and thermal bonding technique.
    Yin Z; Cheng E; Zou H; Chen L; Xu S
    Biomicrofluidics; 2014 Nov; 8(6):066503. PubMed ID: 25553203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and characterization of 20 nm planar nanofluidic channels by glass-glass and glass-silicon bonding.
    Mao P; Han J
    Lab Chip; 2005 Aug; 5(8):837-44. PubMed ID: 16027934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nano X-ray diffractometry device for nanofluidics.
    Mawatari K; Koreeda H; Ohara K; Kohara S; Yoshida K; Yamaguchi T; Kitamori T
    Lab Chip; 2018 Apr; 18(8):1259-1264. PubMed ID: 29594269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detachable glass micro/nanofluidic device.
    Ohta R; Mawatari K; Takeuchi T; Morikawa K; Kitamori T
    Biomicrofluidics; 2019 Mar; 13(2):024104. PubMed ID: 30915180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of rhombus-shaped micro/nanofluidic channels with dimensions ranging from hundred nanometers to several micrometers.
    Xie F; Wang Y; Wang W; Li Z; Yossifon G; Chang HC
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7277-81. PubMed ID: 21137914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.