These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 34209303)

  • 41. Scalable Fabrication of Metallic Nanogaps at the Sub-10 nm Level.
    Luo S; Hoff BH; Maier SA; de Mello JC
    Adv Sci (Weinh); 2021 Dec; 8(24):e2102756. PubMed ID: 34719889
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ion beam etching redeposition for 3D multimaterial nanostructure manufacturing.
    Desbiolles BXE; Bertsch A; Renaud P
    Microsyst Nanoeng; 2019; 5():11. PubMed ID: 31057938
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fabrication of monolithic polymer nanofluidic channels using nanowires as sacrificial templates.
    Chu KS; Kim S; Chung H; Oh JH; Seong TY; An BH; Kim YK; Park JH; Do YR; Kim W
    Nanotechnology; 2010 Oct; 21(42):425302. PubMed ID: 20864783
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fabrication of Nanoscale Gas-Liquid Interfaces in Hydrophilic/Hydrophobic Nanopatterned Nanofluidic Channels.
    Kawagishi H; Kawamata S; Xu Y
    Nano Lett; 2021 Dec; 21(24):10555-10561. PubMed ID: 34645267
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nanofabrication on unconventional substrates using transferred hard masks.
    Li L; Bayn I; Lu M; Nam CY; Schröder T; Stein A; Harris NC; Englund D
    Sci Rep; 2015 Jan; 5():7802. PubMed ID: 25588550
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Non-lithographic nanofluidic channels with precisely controlled circular cross sections.
    Park YS; Oh JM; Cho YK
    RSC Adv; 2018 May; 8(35):19651-19658. PubMed ID: 35540964
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration.
    Liao Y; Cheng Y; Liu C; Song J; He F; Shen Y; Chen D; Xu Z; Fan Z; Wei X; Sugioka K; Midorikawa K
    Lab Chip; 2013 Apr; 13(8):1626-31. PubMed ID: 23463190
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High throughput fabrication of disposable nanofluidic lab-on-chip devices for single molecule studies.
    van Kan JA; Zhang C; Perumal Malar P; van der Maarel JR
    Biomicrofluidics; 2012 Sep; 6(3):36502. PubMed ID: 23898358
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transport and sensing in nanofluidic devices.
    Zhou K; Perry JM; Jacobson SC
    Annu Rev Anal Chem (Palo Alto Calif); 2011; 4():321-41. PubMed ID: 21456970
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ultranarrow plasmon resonances from annealed nanoparticle lattices.
    Deng S; Li R; Park JE; Guan J; Choo P; Hu J; Smeets PJM; Odom TW
    Proc Natl Acad Sci U S A; 2020 Sep; 117(38):23380-23384. PubMed ID: 32900952
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Insight on the regulation mechanism of the nanochannels in hard and brittle materials induced by sparially shaped femtosecond laser.
    Kai L; Chen C; Lu Y; Meng Y; Liu Y; Cheng Y; Yang Q; Hou X; Chen F
    Front Chem; 2022; 10():973570. PubMed ID: 36046730
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nanofluidic channels by anodic bonding of amorphous silicon to glass to study ion-accumulation and ion-depletion effect.
    Datta A; Gangopadhyay S; Temkin H; Pu Q; Liu S
    Talanta; 2006 Jan; 68(3):659-65. PubMed ID: 18970372
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A novel 2D silicon nano-mold fabrication technique for linear nanochannels over a 4 inch diameter substrate.
    Yin Z; Qi L; Zou H; Sun L
    Sci Rep; 2016 Jan; 6():18921. PubMed ID: 26752559
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Wafer-scale fabrication of high-aspect ratio nanochannels based on edge-lithography technique.
    Xie Q; Zhou Q; Xie F; Sang J; Wang W; Zhang HA; Wu W; Li Z
    Biomicrofluidics; 2012 Mar; 6(1):16502-165028. PubMed ID: 22396721
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Au double nanopillars with nanogap for plasmonic sensor.
    Kubo W; Fujikawa S
    Nano Lett; 2011 Jan; 11(1):8-15. PubMed ID: 21114297
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Physics and technological aspects of nanofluidics.
    Bocquet L; Tabeling P
    Lab Chip; 2014 Sep; 14(17):3143-58. PubMed ID: 25046581
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nanofluidic crystals: nanofluidics in a close-packed nanoparticle array.
    Ouyang W; Han J; Wang W
    Lab Chip; 2017 Sep; 17(18):3006-3025. PubMed ID: 28752878
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fabrication of a Horizontal and a Vertical Large Surface Area Nanogap Electrochemical Sensor.
    Hammond JL; Rosamond MC; Sivaraya S; Marken F; Estrela P
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27983655
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nanofluidic ion transport through reconstructed layered materials.
    Raidongia K; Huang J
    J Am Chem Soc; 2012 Oct; 134(40):16528-31. PubMed ID: 22998077
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fabrication of a Novel Nanofluidic Device Featuring ZnO Nanochannels.
    Kim S; Kim GH; Woo H; An T; Lim G
    ACS Omega; 2020 Feb; 5(7):3144-3150. PubMed ID: 32118130
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.