These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
64. Shifting plant species composition in response to climate change stabilizes grassland primary production. Liu H; Mi Z; Lin L; Wang Y; Zhang Z; Zhang F; Wang H; Liu L; Zhu B; Cao G; Zhao X; Sanders NJ; Classen AT; Reich PB; He JS Proc Natl Acad Sci U S A; 2018 Apr; 115(16):4051-4056. PubMed ID: 29666319 [TBL] [Abstract][Full Text] [Related]
65. A Range-Expanding Shrub Species Alters Plant Phenological Response to Experimental Warming. Kopp CW; Cleland EE PLoS One; 2015; 10(9):e0139029. PubMed ID: 26402617 [TBL] [Abstract][Full Text] [Related]
66. Global variation in diurnal asymmetry in temperature, cloud cover, specific humidity and precipitation and its association with leaf area index. Cox DTC; Maclean IMD; Gardner AS; Gaston KJ Glob Chang Biol; 2020 Dec; 26(12):7099-7111. PubMed ID: 32998181 [TBL] [Abstract][Full Text] [Related]
67. Climate warming and biomass accumulation of terrestrial plants: a meta-analysis. Lin D; Xia J; Wan S New Phytol; 2010 Oct; 188(1):187-98. PubMed ID: 20609113 [TBL] [Abstract][Full Text] [Related]
68. Effects of warming and altered precipitation on plant and nutrient dynamics of a New England salt marsh. Charles H; Dukes JS Ecol Appl; 2009 Oct; 19(7):1758-73. PubMed ID: 19831068 [TBL] [Abstract][Full Text] [Related]
69. Suitability of macrophytes for nutrient removal from surface flow constructed wetlands receiving secondary treated sewage effluent in Queensland, Australia. Greenway M Water Sci Technol; 2003; 48(2):121-8. PubMed ID: 14510202 [TBL] [Abstract][Full Text] [Related]
70. Gender specific patterns of carbon uptake and water use in a dominant riparian tree species exposed to a warming climate. Hultine KR; Burtch KG; Ehleringer JR Glob Chang Biol; 2013 Nov; 19(11):3390-405. PubMed ID: 23666790 [TBL] [Abstract][Full Text] [Related]
71. Design and performance of combined infrared canopy and belowground warming in the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment. Rich RL; Stefanski A; Montgomery RA; Hobbie SE; Kimball BA; Reich PB Glob Chang Biol; 2015 Jun; 21(6):2334-48. PubMed ID: 25640748 [TBL] [Abstract][Full Text] [Related]
72. Thermal controls of Yellowstone cutthroat trout and invasive fishes under climate change. Al-Chokhachy R; Alder J; Hostetler S; Gresswell R; Shepard B Glob Chang Biol; 2013 Oct; 19(10):3069-81. PubMed ID: 23687062 [TBL] [Abstract][Full Text] [Related]
73. Increased resource use efficiency amplifies positive response of aquatic primary production to experimental warming. Hood JM; Benstead JP; Cross WF; Huryn AD; Johnson PW; Gíslason GM; Junker JR; Nelson D; Ólafsson JS; Tran C Glob Chang Biol; 2018 Mar; 24(3):1069-1084. PubMed ID: 28922515 [TBL] [Abstract][Full Text] [Related]
74. Shifting grassland plant community structure drives positive interactive effects of warming and diversity on aboveground net primary productivity. Cowles JM; Wragg PD; Wright AJ; Powers JS; Tilman D Glob Chang Biol; 2016 Feb; 22(2):741-9. PubMed ID: 26426698 [TBL] [Abstract][Full Text] [Related]
76. Photosynthetic and respiratory acclimation and growth response of Antarctic vascular plants to contrasting temperature regimes. Xiong FS; Mueller EC; Day TA Am J Bot; 2000 May; 87(5):700-10. PubMed ID: 10811794 [TBL] [Abstract][Full Text] [Related]
77. The fluctuating resource hypothesis explains invasibility, but not exotic advantage following disturbance. Pearson DE; Ortega YK; Villarreal D; Lekberg Y; Cock MC; Eren Ö; Hierro JL Ecology; 2018 Jun; 99(6):1296-1305. PubMed ID: 29624663 [TBL] [Abstract][Full Text] [Related]
78. Effects of thermal evolution on the stoichiometric responses to nano-ZnO under warming are not general: insights from experimental evolution. Zhang C; De Meester L; Stoks R Ecotoxicology; 2020 Mar; 29(2):175-184. PubMed ID: 31940103 [TBL] [Abstract][Full Text] [Related]
79. Warming alters the network of physiological traits and their contribution to plant abundance. Yuan G; Levi EE; Davidson TA; Lauridsen TL; Søndergaard M; Yang Z; Wu A; Cao T; Li Y; Fu H; Jeppesen E Sci Total Environ; 2024 Aug; 939():173573. PubMed ID: 38823703 [TBL] [Abstract][Full Text] [Related]
80. Biomechanical responses of aquatic plants to aerial conditions. Hamann E; Puijalon S Ann Bot; 2013 Dec; 112(9):1869-78. PubMed ID: 24187030 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]