These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 34210135)

  • 1. Can Carbon Nanotube Transistors Be Scaled Down to the Sub-5 nm Gate Length?
    Xu L; Yang J; Qiu C; Liu S; Zhou W; Li Q; Shi B; Ma J; Yang C; Lu J; Zhang Z
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):31957-31967. PubMed ID: 34210135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SiX
    Yan S; Wang K; Guo Z; Wu YN; Chen S
    Nano Lett; 2024 May; 24(20):6158-6164. PubMed ID: 38723204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon Nanotube Film-Based Radio Frequency Transistors with Maximum Oscillation Frequency above 100 GHz.
    Zhong D; Shi H; Ding L; Zhao C; Liu J; Zhou J; Zhang Z; Peng LM
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42496-42503. PubMed ID: 31618003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scaling of N-Type Field-Effect Transistors Based on Aligned Carbon Nanotube Arrays.
    Liu C; Cao Y; Lu H; Lin Y; Jin C; Zhang Z
    ACS Appl Mater Interfaces; 2024 Oct; ():. PubMed ID: 39356653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sub-5 nm Monolayer Arsenene and Antimonene Transistors.
    Sun X; Song Z; Liu S; Wang Y; Li Y; Wang W; Lu J
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22363-22371. PubMed ID: 29877077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Performance Dual-Gate Transistors Based on Aligned Carbon Nanotubes.
    Lv J; Shen Z; Meng D; Peng LM; Qiu C
    ACS Appl Mater Interfaces; 2024 Oct; 16(43):58864-58871. PubMed ID: 39405431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs.
    Brady GJ; Way AJ; Safron NS; Evensen HT; Gopalan P; Arnold MS
    Sci Adv; 2016 Sep; 2(9):e1601240. PubMed ID: 27617293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complementary Transistors Based on Aligned Semiconducting Carbon Nanotube Arrays.
    Liu C; Cao Y; Wang B; Zhang Z; Lin Y; Xu L; Yang Y; Jin C; Peng LM; Zhang Z
    ACS Nano; 2022 Dec; 16(12):21482-21490. PubMed ID: 36416375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance Limit of Monolayer WSe
    Sun X; Xu L; Zhang Y; Wang W; Liu S; Yang C; Zhang Z; Lu J
    ACS Appl Mater Interfaces; 2020 May; 12(18):20633-20644. PubMed ID: 32285659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-Dimensional Fin-Structured Semiconducting Carbon Nanotube Network Transistor.
    Lee D; Lee BH; Yoon J; Ahn DC; Park JY; Hur J; Kim MS; Jeon SB; Kang MH; Kim K; Lim M; Choi SJ; Choi YK
    ACS Nano; 2016 Dec; 10(12):10894-10900. PubMed ID: 28024320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scaling carbon nanotube complementary transistors to 5-nm gate lengths.
    Qiu C; Zhang Z; Xiao M; Yang Y; Zhong D; Peng LM
    Science; 2017 Jan; 355(6322):271-276. PubMed ID: 28104886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sub-5 nm Ultrathin In
    Xu L; Xu L; Lan J; Li Y; Li Q; Wang A; Guo Y; Ang YS; Quhe R; Lu J
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38676632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can ultra-thin Si FinFETs work well in the sub-10 nm gate-length region?
    Liu S; Yang J; Xu L; Li J; Yang C; Li Y; Shi B; Pan Y; Xu L; Ma J; Yang J; Lu J
    Nanoscale; 2021 Mar; 13(10):5536-5544. PubMed ID: 33688887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tellurium Nanowire Gate-All-Around MOSFETs for Sub-5 nm Applications.
    Yin Y; Zhang Z; Zhong H; Shao C; Wan X; Zhang C; Robertson J; Guo Y
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):3387-3396. PubMed ID: 33404208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sub-5 nm Gate-Length Monolayer Selenene Transistors.
    Li Q; Tan X; Yang Y; Xiong X; Zhang T; Weng Z
    Molecules; 2023 Jul; 28(14):. PubMed ID: 37513262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heavy Ion Displacement Damage Effect in Carbon Nanotube Field Effect Transistors.
    Lu P; Zhu M; Zhao P; Fan C; Zhu H; Gao J; Yang C; Han Z; Li B; Liu J; Zhang Z
    ACS Appl Mater Interfaces; 2023 Mar; 15(8):10936-10946. PubMed ID: 36791232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-Temperature Side Contact to Carbon Nanotube Transistors: Resistance Distributions Down to 10 nm Contact Length.
    Pitner G; Hills G; Llinas JP; Persson KM; Park R; Bokor J; Mitra S; Wong HP
    Nano Lett; 2019 Feb; 19(2):1083-1089. PubMed ID: 30677297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving the Performance of Aligned Carbon Nanotube-Based Transistors by Refreshing the Substrate Surface.
    Lin Y; Cao Y; Lu H; Liu C; Zhang Z; Jin C; Peng LM; Zhang Z
    ACS Appl Mater Interfaces; 2023 Mar; 15(8):10830-10837. PubMed ID: 36795423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving Carbon Nanotube-Based Radiofrequency Field-Effect Transistors by the Device Architecture and Doping Process.
    Ren L; Zhou J; Pan Z; Li H; Ding L; Zhang Z; Peng LM
    ACS Appl Mater Interfaces; 2024 Mar; 16(10):12813-12820. PubMed ID: 38412248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Performance One-Dimensional Sub-5 nm Transistors Based on Poly(p-phenylene ethynylene) Molecular Wires.
    Chen Z; Tan X; Li Q; Wan J; Xu G
    Molecules; 2024 Jul; 29(13):. PubMed ID: 38999159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.