BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

399 related articles for article (PubMed ID: 34210174)

  • 1. Roadmap for Advancing Pre-Clinical Science in Traumatic Brain Injury.
    Smith DH; Kochanek PM; Rosi S; Meyer R; Ferland-Beckham C; Prager EM; Ahlers ST; Crawford F
    J Neurotrauma; 2021 Dec; 38(23):3204-3221. PubMed ID: 34210174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding microglial responses in large animal models of traumatic brain injury: an underutilized resource for preclinical and translational research.
    Grovola MR; von Reyn C; Loane DJ; Cullen DK
    J Neuroinflammation; 2023 Mar; 20(1):67. PubMed ID: 36894951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Models of Traumatic Brain Injury in Aged Animals: A Clinical Perspective.
    Iboaya A; Harris JL; Arickx AN; Nudo RJ
    Neurorehabil Neural Repair; 2019 Dec; 33(12):975-988. PubMed ID: 31722616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pre-clinical models in pediatric traumatic brain injury-challenges and lessons learned.
    Kochanek PM; Wallisch JS; Bayır H; Clark RSB
    Childs Nerv Syst; 2017 Oct; 33(10):1693-1701. PubMed ID: 29149385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diffuse axonal injury predicts neurodegeneration after moderate-severe traumatic brain injury.
    Graham NSN; Jolly A; Zimmerman K; Bourke NJ; Scott G; Cole JH; Schott JM; Sharp DJ
    Brain; 2020 Dec; 143(12):3685-3698. PubMed ID: 33099608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward development of clinically translatable diagnostic and prognostic metrics of traumatic brain injury using animal models: A review and a look forward.
    Hajiaghamemar M; Seidi M; Oeur RA; Margulies SS
    Exp Neurol; 2019 Aug; 318():101-123. PubMed ID: 31055005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Paths to Successful Translation of New Therapies for Severe Traumatic Brain Injury in the Golden Age of Traumatic Brain Injury Research: A Pittsburgh Vision.
    Kochanek PM; Jackson TC; Jha RM; Clark RSB; Okonkwo DO; Bayır H; Poloyac SM; Wagner AK; Empey PE; Conley YP; Bell MJ; Kline AE; Bondi CO; Simon DW; Carlson SW; Puccio AM; Horvat CM; Au AK; Elmer J; Treble-Barna A; Ikonomovic MD; Shutter LA; Taylor DL; Stern AM; Graham SH; Kagan VE; Jackson EK; Wisniewski SR; Dixon CE
    J Neurotrauma; 2020 Nov; 37(22):2353-2371. PubMed ID: 30520681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drosophila as a model to explore secondary injury cascades after traumatic brain injury.
    Buhlman LM; Krishna G; Jones TB; Thomas TC
    Biomed Pharmacother; 2021 Oct; 142():112079. PubMed ID: 34463269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contusion brain damage in mice for modelling of post-traumatic epilepsy with contralateral hippocampus sclerosis: Comprehensive and longitudinal characterization of spontaneous seizures, neuropathology, and neuropsychiatric comorbidities.
    Golub VM; Reddy DS
    Exp Neurol; 2022 Feb; 348():113946. PubMed ID: 34896334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuroprotective strategies for traumatic brain injury: improving clinical translation.
    Kabadi SV; Faden AI
    Int J Mol Sci; 2014 Jan; 15(1):1216-36. PubMed ID: 24445258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Traumatic Axonal Injury: Mechanisms and Translational Opportunities.
    Hill CS; Coleman MP; Menon DK
    Trends Neurosci; 2016 May; 39(5):311-324. PubMed ID: 27040729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular players that shape evolving pathology and neurodegeneration following traumatic brain injury.
    Puntambekar SS; Saber M; Lamb BT; Kokiko-Cochran ON
    Brain Behav Immun; 2018 Jul; 71():9-17. PubMed ID: 29601944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current concepts: diffuse axonal injury-associated traumatic brain injury.
    Meythaler JM; Peduzzi JD; Eleftheriou E; Novack TA
    Arch Phys Med Rehabil; 2001 Oct; 82(10):1461-71. PubMed ID: 11588754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel Rat Model of Weight Drop-Induced Closed Diffuse Traumatic Brain Injury Compatible with Electrophysiological Recordings of Vigilance States.
    Büchele F; Morawska MM; Schreglmann SR; Penner M; Muser M; Baumann CR; Noain D
    J Neurotrauma; 2016 Jul; 33(13):1171-80. PubMed ID: 26414556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intervention of neuroinflammation in the traumatic brain injury trajectory: In vivo and clinical approaches.
    Prabhakar NK; Khan H; Grewal AK; Singh TG
    Int Immunopharmacol; 2022 Jul; 108():108902. PubMed ID: 35729835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cordycepin confers long-term neuroprotection via inhibiting neutrophil infiltration and neuroinflammation after traumatic brain injury.
    Wei P; Wang K; Luo C; Huang Y; Misilimu D; Wen H; Jin P; Li C; Gong Y; Gao Y
    J Neuroinflammation; 2021 Jun; 18(1):137. PubMed ID: 34130727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of Machine Learning to Re-Assess Patterns of Multivariate Functional Recovery after Fluid Percussion Injury: Operation Brain Trauma Therapy.
    Radabaugh H; Bonnell J; Schwartz O; Sarkar D; Dietrich WD; Bramlett HM
    J Neurotrauma; 2021 Jun; 38(12):1670-1678. PubMed ID: 33107380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Animal Models of Traumatic Brain Injury and Assessment of Injury Severity.
    Ma X; Aravind A; Pfister BJ; Chandra N; Haorah J
    Mol Neurobiol; 2019 Aug; 56(8):5332-5345. PubMed ID: 30603958
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 20.