These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 34210429)

  • 1. Sorption mechanism of naphthalene by diesel soot: Insight from displacement with phenanthrene/p-nitrophenol.
    Wu W; Huang Y; Lin D; Yang K
    J Environ Sci (China); 2021 Aug; 106():136-146. PubMed ID: 34210429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absorption and adsorption of hydrophobic organic contaminants to diesel and hexane soot.
    Nguyen TH; Ball WP
    Environ Sci Technol; 2006 May; 40(9):2958-64. PubMed ID: 16719097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sorption of phenanthrene by nanosized alumina coated with sequentially extracted humic acids.
    Yang K; Zhu L; Xing B
    Environ Sci Pollut Res Int; 2010 Feb; 17(2):410-9. PubMed ID: 19468767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of the Chemical Structure, Surface, and Micropore Properties of Activated and Oxidized Black Carbon on the Sorption and Desorption of Phenanthrene.
    Hu S; Zhang D; Yang Y; Ran Y; Mao J; Chu W; Cao X
    Environ Sci Technol; 2019 Jul; 53(13):7683-7693. PubMed ID: 31244067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Competitive sorption of pyrene, phenanthrene, and naphthalene on multiwalled carbon nanotubes.
    Yang K; Wang X; Zhu L; Xing B
    Environ Sci Technol; 2006 Sep; 40(18):5804-10. PubMed ID: 17007144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Total organic carbon content as an index to estimate the sorption capacity of micro- and nano-plastics for hydrophobic organic contaminants.
    Zheng R; Li Q; Li P; Li L; Liu J
    Chemosphere; 2023 Feb; 313():137374. PubMed ID: 36435320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Naphthalene and phenanthrene sorption to very low organic content diatomaceous earth: modeling implications for microbial bioavailability.
    Mittal M; Rockne KJ
    Chemosphere; 2009 Feb; 74(8):1134-44. PubMed ID: 19058832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Displacement and competitive sorption of organic pollutants on multiwalled carbon nanotubes.
    Shen X; Wang X; Tao S; Xing B
    Environ Sci Pollut Res Int; 2014 Oct; 21(20):11979-86. PubMed ID: 25028316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of native organic material and water on sorption properties of reference diesel soot.
    Endo S; Grathwohl P; Haderlein SB; Schmidt TC
    Environ Sci Technol; 2009 May; 43(9):3187-93. PubMed ID: 19534133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immobilization of soot particles in a silica matrix: A sorbent-carrier system for studying organic chemical sorption.
    Nguyen TH; Sabbah I; Ball WP
    Environ Sci Technol; 2005 Sep; 39(17):6527-34. PubMed ID: 16190208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sorption of a diverse set of organic vapors to diesel soot and road tunnel aerosols.
    Roth CM; Goss KU; Schwarzenbach RP
    Environ Sci Technol; 2005 Sep; 39(17):6632-7. PubMed ID: 16190221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of competitor and natural organic matter characteristics on the equilibrium sorption of 1,2-dichlorobenzene in soil and shale.
    Ju D; Young TM
    Environ Sci Technol; 2004 Nov; 38(22):5863-70. PubMed ID: 15573583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption of Organic Compounds to Diesel Soot: Frontal Analysis and Polyparameter Linear Free-Energy Relationship.
    Lu Z; MacFarlane JK; Gschwend PM
    Environ Sci Technol; 2016 Jan; 50(1):285-93. PubMed ID: 26587648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequestration effect and mechanism of PCB1 by high-temperature black carbon.
    Xu W; Hu X; Jiang X; Shi K; Tong Y; Shen C; Lou L
    Environ Sci Pollut Res Int; 2020 Sep; 27(25):31516-31526. PubMed ID: 32495204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sorption of four hydrophobic organic compounds by three chemically distinct polymers: role of chemical and physical composition.
    Guo X; Wang X; Zhou X; Kong X; Tao S; Xing B
    Environ Sci Technol; 2012 Jul; 46(13):7252-9. PubMed ID: 22676433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sorption nonlinearity for organic contaminants with diesel soot: method development and isotherm interpretation.
    Nguyen TH; Sabbah I; Ball WP
    Environ Sci Technol; 2004 Jul; 38(13):3595-603. PubMed ID: 15296310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Competitive sorption of mixed organic pollutants by soils].
    Chen DY; Xie WB; Ji L; Li JW; Tang ZP
    Huan Jing Ke Xue; 2006 Jul; 27(7):1377-82. PubMed ID: 16881313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of deashing treatment on biochar structural properties and potential sorption mechanisms of phenanthrene.
    Sun K; Kang M; Zhang Z; Jin J; Wang Z; Pan Z; Xu D; Wu F; Xing B
    Environ Sci Technol; 2013 Oct; 47(20):11473-81. PubMed ID: 24025082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strong binding of apolar hydrophobic organic contaminants by dissolved black carbon released from biochar: A mechanism of pseudomicelle partition and environmental implications.
    Fu H; Wei C; Qu X; Li H; Zhu D
    Environ Pollut; 2018 Jan; 232():402-410. PubMed ID: 28966024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative high-resolution mapping of phenanthrene sorption to black carbon particles.
    Obst M; Grathwohl P; Kappler A; Eibl O; Peranio N; Gocht T
    Environ Sci Technol; 2011 Sep; 45(17):7314-22. PubMed ID: 21755998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.