These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 34210794)

  • 1. A dynamical model for generating synthetic data to quantify active tactile sensing behavior in the rat.
    Zweifel NO; Bush NE; Abraham I; Murphey TD; Hartmann MJZ
    Proc Natl Acad Sci U S A; 2021 Jul; 118(27):. PubMed ID: 34210794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Whisker Vibrations and the Activity of Trigeminal Primary Afferents in Response to Airflow.
    Yu YSW; Bush NE; Hartmann MJZ
    J Neurosci; 2019 Jul; 39(30):5881-5896. PubMed ID: 31097620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The morphology of the rat vibrissal array: a model for quantifying spatiotemporal patterns of whisker-object contact.
    Towal RB; Quist BW; Gopal V; Solomon JH; Hartmann MJ
    PLoS Comput Biol; 2011 Apr; 7(4):e1001120. PubMed ID: 21490724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variations in vibrissal geometry across the rat mystacial pad: base diameter, medulla, and taper.
    Belli HM; Yang AE; Bresee CS; Hartmann MJ
    J Neurophysiol; 2017 Apr; 117(4):1807-1820. PubMed ID: 27881718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tactile signals transmitted by the vibrissa during active whisking behavior.
    Huet LA; Schroeder CL; Hartmann MJ
    J Neurophysiol; 2015 Jun; 113(10):3511-8. PubMed ID: 25867739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling forces and moments at the base of a rat vibrissa during noncontact whisking and whisking against an object.
    Quist BW; Seghete V; Huet LA; Murphey TD; Hartmann MJ
    J Neurosci; 2014 Jul; 34(30):9828-44. PubMed ID: 25057187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensorimotor integration in the whisker somatosensory brain stem trigeminal loop.
    Tsur O; Khrapunsky Y; Azouz R
    J Neurophysiol; 2019 Nov; 122(5):2061-2075. PubMed ID: 31533013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feedback control in active sensing: rat exploratory whisking is modulated by environmental contact.
    Mitchinson B; Martin CJ; Grant RA; Prescott TJ
    Proc Biol Sci; 2007 Apr; 274(1613):1035-41. PubMed ID: 17331893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical responses of rat vibrissae to airflow.
    Yu YS; Graff MM; Hartmann MJ
    J Exp Biol; 2016 Apr; 219(Pt 7):937-48. PubMed ID: 27030774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active touch sensing in the rat: anticipatory and regulatory control of whisker movements during surface exploration.
    Grant RA; Mitchinson B; Fox CW; Prescott TJ
    J Neurophysiol; 2009 Feb; 101(2):862-74. PubMed ID: 19036871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probability distributions of whisker-surface contact: quantifying elements of the rat vibrissotactile natural scene.
    Hobbs JA; Towal RB; Hartmann MJ
    J Exp Biol; 2015 Aug; 218(Pt 16):2551-62. PubMed ID: 26290591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decoupling kinematics and mechanics reveals coding properties of trigeminal ganglion neurons in the rat vibrissal system.
    Bush NE; Schroeder CL; Hobbs JA; Yang AE; Huet LA; Solla SA; Hartmann MJ
    Elife; 2016 Jun; 5():. PubMed ID: 27348221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unsupervised whisker tracking in unrestrained behaving animals.
    Voigts J; Sakmann B; Celikel T
    J Neurophysiol; 2008 Jul; 100(1):504-15. PubMed ID: 18463190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of vibrissal mechanical properties across the rat mystacial pad.
    Yang AE; Belli HM; Hartmann MJZ
    J Neurophysiol; 2019 May; 121(5):1879-1895. PubMed ID: 30811257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using hardware models to quantify sensory data acquisition across the rat vibrissal array.
    Gopal V; Hartmann MJ
    Bioinspir Biomim; 2007 Dec; 2(4):S135-45. PubMed ID: 18037723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beyond cones: an improved model of whisker bending based on measured mechanics and tapering.
    Hires SA; Schuyler A; Sy J; Huang V; Wyche I; Wang X; Golomb D
    J Neurophysiol; 2016 Aug; 116(2):812-24. PubMed ID: 27250911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A night in the life of a rat: vibrissal mechanics and tactile exploration.
    Hartmann MJ
    Ann N Y Acad Sci; 2011 Apr; 1225():110-8. PubMed ID: 21534998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of tactile information transmission through whisker vibrations.
    Lottem E; Azouz R
    J Neurosci; 2009 Sep; 29(37):11686-97. PubMed ID: 19759315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the intrinsic curvature of animal whiskers.
    Luo Y; Hartmann MJZ
    PLoS One; 2023; 18(1):e0269210. PubMed ID: 36607960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental milestones and behavior of infant rats: The role of sensory input from whiskers.
    Smirnov K; Sitnikova E
    Behav Brain Res; 2019 Nov; 374():112143. PubMed ID: 31398362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.