These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 34210884)

  • 21. Silicon nitride stress-optic microresonator modulator for optical control applications.
    Wang J; Liu K; Harrington MW; Rudy RQ; Blumenthal DJ
    Opt Express; 2022 Aug; 30(18):31816-31827. PubMed ID: 36242256
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A chip-scale second-harmonic source via self-injection-locked all-optical poling.
    Clementi M; Nitiss E; Liu J; Durán-Valdeiglesias E; Belahsene S; Debrégeas H; Kippenberg TJ; Brès CS
    Light Sci Appl; 2023 Dec; 12(1):296. PubMed ID: 38062066
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Soliton formation and spectral translation into visible on CMOS-compatible 4H-silicon-carbide-on-insulator platform.
    Wang C; Li J; Yi A; Fang Z; Zhou L; Wang Z; Niu R; Chen Y; Zhang J; Cheng Y; Liu J; Dong CH; Ou X
    Light Sci Appl; 2022 Dec; 11(1):341. PubMed ID: 36473842
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dual-laser self-injection locking to an integrated microresonator.
    Chermoshentsev DA; Shitikov AE; Lonshakov EA; Grechko GV; Sazhina EA; Kondratiev NM; Masalov AV; Bilenko IA; Lvovsky AI; Ulanov AE
    Opt Express; 2022 May; 30(10):17094-17105. PubMed ID: 36221539
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigation of the phase noise of a microresonator soliton comb.
    Nishimoto K; Minoshima K; Yasui T; Kuse N
    Opt Express; 2020 Jun; 28(13):19295-19303. PubMed ID: 32672209
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3D integration enables ultralow-noise isolator-free lasers in silicon photonics.
    Xiang C; Jin W; Terra O; Dong B; Wang H; Wu L; Guo J; Morin TJ; Hughes E; Peters J; Ji QX; Feshali A; Paniccia M; Vahala KJ; Bowers JE
    Nature; 2023 Aug; 620(7972):78-85. PubMed ID: 37532812
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coherent optical communications using coherence-cloned Kerr soliton microcombs.
    Geng Y; Zhou H; Han X; Cui W; Zhang Q; Liu B; Deng G; Zhou Q; Qiu K
    Nat Commun; 2022 Feb; 13(1):1070. PubMed ID: 35228546
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrafast optical ranging using microresonator soliton frequency combs.
    Trocha P; Karpov M; Ganin D; Pfeiffer MHP; Kordts A; Wolf S; Krockenberger J; Marin-Palomo P; Weimann C; Randel S; Freude W; Kippenberg TJ; Koos C
    Science; 2018 Feb; 359(6378):887-891. PubMed ID: 29472477
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aluminum nitride nanophotonics for beyond-octave soliton microcomb generation and self-referencing.
    Liu X; Gong Z; Bruch AW; Surya JB; Lu J; Tang HX
    Nat Commun; 2021 Sep; 12(1):5428. PubMed ID: 34521858
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits.
    Liu J; Huang G; Wang RN; He J; Raja AS; Liu T; Engelsen NJ; Kippenberg TJ
    Nat Commun; 2021 Apr; 12(1):2236. PubMed ID: 33863901
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Soliton Microcomb on Chip Integrated
    Chen X; Sun S; Ji W; Ding X; Gao Y; Liu T; Wen J; Guo H; Wang T
    Micromachines (Basel); 2022 Nov; 13(12):. PubMed ID: 36557424
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A III-V-on-Si ultra-dense comb laser.
    Wang Z; Van Gasse K; Moskalenko V; Latkowski S; Bente E; Kuyken B; Roelkens G
    Light Sci Appl; 2017 May; 6(5):e16260. PubMed ID: 30167253
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chip-based soliton microcomb module using a hybrid semiconductor laser.
    Raja AS; Liu J; Volet N; Wang RN; He J; Lucas E; Bouchandand R; Morton P; Bowers J; Kippenberg TJ
    Opt Express; 2020 Feb; 28(3):2714-2721. PubMed ID: 32121953
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gain-switched semiconductor laser driven soliton microcombs.
    Weng W; Kaszubowska-Anandarajah A; He J; Lakshmijayasimha PD; Lucas E; Liu J; Anandarajah PM; Kippenberg TJ
    Nat Commun; 2021 Mar; 12(1):1425. PubMed ID: 33658513
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Raman Self-Frequency Shift of Dissipative Kerr Solitons in an Optical Microresonator.
    Karpov M; Guo H; Kordts A; Brasch V; Pfeiffer MH; Zervas M; Geiselmann M; Kippenberg TJ
    Phys Rev Lett; 2016 Mar; 116(10):103902. PubMed ID: 27015482
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Third-harmonic-assisted four-wave mixing in a chip-based microresonator frequency comb generation.
    Zhang H; Wu Y; Yang H; Ju Z; Kang Z; He J; Pan S
    Opt Express; 2022 Oct; 30(21):37379-37393. PubMed ID: 36258327
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impact of the precursor gas ratio on dispersion engineering of broadband silicon nitride microresonator frequency combs.
    Moille G; Westly D; Simelgor G; Srinivasan K
    Opt Lett; 2021 Dec; 46(23):5970-5973. PubMed ID: 34851936
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microresonator-based solitons for massively parallel coherent optical communications.
    Marin-Palomo P; Kemal JN; Karpov M; Kordts A; Pfeifle J; Pfeiffer MHP; Trocha P; Wolf S; Brasch V; Anderson MH; Rosenberger R; Vijayan K; Freude W; Kippenberg TJ; Koos C
    Nature; 2017 Jun; 546(7657):274-279. PubMed ID: 28593968
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly efficient coupling of crystalline microresonators to integrated photonic waveguides.
    Anderson M; Pavlov NG; Jost JD; Lihachev G; Liu J; Morais T; Zervas M; Gorodetsky ML; Kippenberg TJ
    Opt Lett; 2018 May; 43(9):2106-2109. PubMed ID: 29714757
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surpassing the nonlinear conversion efficiency of soliton microcombs.
    Helgason ÓB; Girardi M; Ye Z; Lei F; Schröder J; Torres-Company V
    Nat Photonics; 2023; 17(11):992-999. PubMed ID: 37920810
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.