These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 34211188)
1. Meta-analysis defines principles for the design and analysis of co-fractionation mass spectrometry experiments. Skinnider MA; Foster LJ Nat Methods; 2021 Jul; 18(7):806-815. PubMed ID: 34211188 [TBL] [Abstract][Full Text] [Related]
2. Mapping protein states and interactions across the tree of life with co-fractionation mass spectrometry. Skinnider MA; Akinlaja MO; Foster LJ Nat Commun; 2023 Dec; 14(1):8365. PubMed ID: 38102123 [TBL] [Abstract][Full Text] [Related]
4. Analytical Guidelines for co-fractionation Mass Spectrometry Obtained through Global Profiling of Gold Standard Pang CNI; Ballouz S; Weissberger D; Thibaut LM; Hamey JJ; Gillis J; Wilkins MR; Hart-Smith G Mol Cell Proteomics; 2020 Nov; 19(11):1876-1895. PubMed ID: 32817346 [TBL] [Abstract][Full Text] [Related]
5. Co-fractionation/mass spectrometry to identify protein complexes. McWhite CD; Papoulas O; Drew K; Dang V; Leggere JC; Sae-Lee W; Marcotte EM STAR Protoc; 2021 Mar; 2(1):100370. PubMed ID: 33748783 [TBL] [Abstract][Full Text] [Related]
6. Trends in co-fractionation mass spectrometry: A new gold-standard in global protein interaction network discovery. Goel RK; Bithi N; Emili A Curr Opin Struct Biol; 2024 Oct; 88():102880. PubMed ID: 38996623 [TBL] [Abstract][Full Text] [Related]
7. Recent progress in mass spectrometry-based strategies for elucidating protein-protein interactions. Low TY; Syafruddin SE; Mohtar MA; Vellaichamy A; A Rahman NS; Pung YF; Tan CSH Cell Mol Life Sci; 2021 Jul; 78(13):5325-5339. PubMed ID: 34046695 [TBL] [Abstract][Full Text] [Related]
8. Discovery-Versus Hypothesis-Driven Detection of Protein-Protein Interactions and Complexes. Bludau I Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33923221 [TBL] [Abstract][Full Text] [Related]
9. Integration of data-independent acquisition (DIA) with co-fractionation mass spectrometry (CF-MS) to enhance interactome mapping capabilities. Hay BN; Akinlaja MO; Baker TC; Houfani AA; Stacey RG; Foster LJ Proteomics; 2023 Nov; 23(21-22):e2200278. PubMed ID: 37144656 [TBL] [Abstract][Full Text] [Related]
10. Mapping the lung proteome in cystic fibrosis. Gharib SA; Vaisar T; Aitken ML; Park DR; Heinecke JW; Fu X J Proteome Res; 2009 Jun; 8(6):3020-8. PubMed ID: 19354268 [TBL] [Abstract][Full Text] [Related]
11. Characterization of a Protein Interactome by Co-Immunoprecipitation and Shotgun Mass Spectrometry. Maccarrone G; Bonfiglio JJ; Silberstein S; Turck CW; Martins-de-Souza D Methods Mol Biol; 2017; 1546():223-234. PubMed ID: 27896772 [TBL] [Abstract][Full Text] [Related]
12. A feature extraction free approach for protein interactome inference from co-elution data. Chen YH; Chao KH; Wong JY; Liu CF; Leu JY; Tsai HK Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37328692 [TBL] [Abstract][Full Text] [Related]
13. Dual proteome-scale networks reveal cell-specific remodeling of the human interactome. Huttlin EL; Bruckner RJ; Navarrete-Perea J; Cannon JR; Baltier K; Gebreab F; Gygi MP; Thornock A; Zarraga G; Tam S; Szpyt J; Gassaway BM; Panov A; Parzen H; Fu S; Golbazi A; Maenpaa E; Stricker K; Guha Thakurta S; Zhang T; Rad R; Pan J; Nusinow DP; Paulo JA; Schweppe DK; Vaites LP; Harper JW; Gygi SP Cell; 2021 May; 184(11):3022-3040.e28. PubMed ID: 33961781 [TBL] [Abstract][Full Text] [Related]
14. The Methods Employed in Mass Spectrometric Analysis of Posttranslational Modifications (PTMs) and Protein-Protein Interactions (PPIs). Yakubu RR; Nieves E; Weiss LM Adv Exp Med Biol; 2019; 1140():169-198. PubMed ID: 31347048 [TBL] [Abstract][Full Text] [Related]
15. Elucidating the dynamic remodelling of Escherichia coli interactome in different growth conditions using multiplex co-fractionation MS (mCF-MS). Low TY Proteomics; 2023 Nov; 23(21-22):e2300209. PubMed ID: 37986683 [TBL] [Abstract][Full Text] [Related]
16. Proteomic analysis of the Notch interactome. Guruharsha KG; Hori K; Obar RA; Artavanis-Tsakonas S Methods Mol Biol; 2014; 1187():181-92. PubMed ID: 25053490 [TBL] [Abstract][Full Text] [Related]
17. Mass spectrometry-based proteomic platforms for better understanding of SARS-CoV-2 induced pathogenesis and potential diagnostic approaches. Ahsan N; Rao RSP; Wilson RS; Punyamurtula U; Salvato F; Petersen M; Ahmed MK; Abid MR; Verburgt JC; Kihara D; Yang Z; Fornelli L; Foster SB; Ramratnam B Proteomics; 2021 May; 21(10):e2000279. PubMed ID: 33860983 [TBL] [Abstract][Full Text] [Related]
18. Human follicular fluid proteomic and peptidomic composition quantitative studies by SWATH-MS methodology. Applicability of high pH RP-HPLC fractionation. Lewandowska AE; Macur K; Czaplewska P; Liss J; Łukaszuk K; Ołdziej S J Proteomics; 2019 Jan; 191():131-142. PubMed ID: 29530678 [TBL] [Abstract][Full Text] [Related]
19. Mass Spectrometry Analysis of Spatial Protein Networks by Colocalization Analysis (COLA). Mardakheh FK Methods Mol Biol; 2017; 1636():337-352. PubMed ID: 28730490 [TBL] [Abstract][Full Text] [Related]
20. Protein-Protein Interaction Detection Via Mass Spectrometry-Based Proteomics. Turriziani B; von Kriegsheim A; Pennington SR Adv Exp Med Biol; 2016; 919():383-396. PubMed ID: 27975227 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]