These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 34211452)

  • 1. A Synthetic Riboswitch to Regulate Haloarchaeal Gene Expression.
    Born J; Weitzel K; Suess B; Pfeifer F
    Front Microbiol; 2021; 12():696181. PubMed ID: 34211452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive characterization of a theophylline riboswitch reveals two pivotal features of Shine-Dalgarno influencing activated translation property.
    Cui W; Cheng J; Miao S; Zhou L; Liu Z; Guo J; Zhou Z
    Appl Microbiol Biotechnol; 2017 Mar; 101(5):2107-2120. PubMed ID: 27986992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic Comparison and Rational Design of Theophylline Riboswitches for Effective Gene Repression.
    Wang X; Fang C; Wang Y; Shi X; Yu F; Xiong J; Chou SH; He J
    Microbiol Spectr; 2023 Feb; 11(1):e0275222. PubMed ID: 36688639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic riboswitches for the conditional control of gene expression in Streptomyces coelicolor.
    Rudolph MM; Vockenhuber MP; Suess B
    Microbiology (Reading); 2013 Jul; 159(Pt 7):1416-1422. PubMed ID: 23676435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering an inducible gene expression system for Bacillus subtilis from a strong constitutive promoter and a theophylline-activated synthetic riboswitch.
    Cui W; Han L; Cheng J; Liu Z; Zhou L; Guo J; Zhou Z
    Microb Cell Fact; 2016 Nov; 15(1):199. PubMed ID: 27876054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conditional control of gene expression by synthetic riboswitches in Streptomyces coelicolor.
    Rudolph MM; Vockenhuber MP; Suess B
    Methods Enzymol; 2015; 550():283-99. PubMed ID: 25605391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De novo design of a synthetic riboswitch that regulates transcription termination.
    Wachsmuth M; Findeiß S; Weissheimer N; Stadler PF; Mörl M
    Nucleic Acids Res; 2013 Feb; 41(4):2541-51. PubMed ID: 23275562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design criteria for synthetic riboswitches acting on transcription.
    Wachsmuth M; Domin G; Lorenz R; Serfling R; Findeiß S; Stadler PF; Mörl M
    RNA Biol; 2015; 12(2):221-31. PubMed ID: 25826571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of synthetic riboswitch in cell-free protein expression systems.
    Chushak Y; Harbaugh S; Zimlich K; Alfred B; Chávez J; Kelley-Loughnane N
    RNA Biol; 2021 Nov; 18(11):1727-1738. PubMed ID: 33427029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Riboswitches for intracellular study of genes involved in Francisella pathogenesis.
    Reynoso CM; Miller MA; Bina JE; Gallivan JP; Weiss DS
    mBio; 2012 Nov; 3(6):. PubMed ID: 23169998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GvpE- and GvpD-mediated transcription regulation of the p-gvp genes encoding gas vesicles in Halobacterium salinarum.
    Hofacker A; Schmitz KM; Cichonczyk A; Sartorius-Neef S; Pfeifer F
    Microbiology (Reading); 2004 Jun; 150(Pt 6):1829-1838. PubMed ID: 15184569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Theophylline-Responsive Riboswitch Regulates Expression of Nuclear-Encoded Genes.
    Shanidze N; Lenkeit F; Hartig JS; Funck D
    Plant Physiol; 2020 Jan; 182(1):123-135. PubMed ID: 31704721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Requirements for efficient ligand-gated co-transcriptional switching in designed variants of the B. subtilis pbuE adenine-responsive riboswitch in E. coli.
    Drogalis LK; Batey RT
    PLoS One; 2020; 15(12):e0243155. PubMed ID: 33259551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo studies on putative Shine-Dalgarno sequences of the halophilic archaeon Halobacterium salinarum.
    Sartorius-Neef S; Pfeifer F
    Mol Microbiol; 2004 Jan; 51(2):579-88. PubMed ID: 14756795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional and translational S-box riboswitches differ in ligand-binding properties.
    Bhagdikar D; Grundy FJ; Henkin TM
    J Biol Chem; 2020 May; 295(20):6849-6860. PubMed ID: 32209653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of a halobacterial bgaH reporter gene to analyse the regulation of gene expression in halophilic archaea.
    Gregor D; Pfeifer F
    Microbiology (Reading); 2001 Jul; 147(Pt 7):1745-1754. PubMed ID: 11429452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Shine-Dalgarno sequence of riboswitch-regulated single mRNAs shows ligand-dependent accessibility bursts.
    Rinaldi AJ; Lund PE; Blanco MR; Walter NG
    Nat Commun; 2016 Jan; 7():8976. PubMed ID: 26781350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ligand-Induced Stabilization of a Duplex-like Architecture Is Crucial for the Switching Mechanism of the SAM-III Riboswitch.
    Suresh G; Srinivasan H; Nanda S; Priyakumar UD
    Biochemistry; 2016 Jun; 55(24):3349-60. PubMed ID: 27249101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alternative Translation Initiation of a Haloarchaeal Serine Protease Transcript Containing Two In-Frame Start Codons.
    Tang W; Wu Y; Li M; Wang J; Mei S; Tang B; Tang XF
    J Bacteriol; 2016 Jul; 198(13):1892-901. PubMed ID: 27137502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial Protein-Responsive Riboswitches Upregulate Non-AUG Translation Initiation in Yeast.
    Horie F; Endo K; Ito K
    ACS Synth Biol; 2020 Jul; 9(7):1623-1631. PubMed ID: 32531157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.