These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 34211482)

  • 21. The Arabidopsis ELF3 gene regulates vegetative photomorphogenesis and the photoperiodic induction of flowering.
    Zagotta MT; Hicks KA; Jacobs CI; Young JC; Hangarter RP; Meeks-Wagner DR
    Plant J; 1996 Oct; 10(4):691-702. PubMed ID: 8893545
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcriptomic analysis of poco1, a mitochondrial pentatricopeptide repeat protein mutant in Arabidopsis thaliana.
    Emami H; Kumar A; Kempken F
    BMC Plant Biol; 2020 May; 20(1):209. PubMed ID: 32397956
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comprehensive transcriptome analysis reveals genes in response to water deficit in the leaves of Saccharum narenga (Nees ex Steud.) hack.
    Liu X; Zhang R; Ou H; Gui Y; Wei J; Zhou H; Tan H; Li Y
    BMC Plant Biol; 2018 Oct; 18(1):250. PubMed ID: 30342477
    [TBL] [Abstract][Full Text] [Related]  

  • 24. HAHB10, a sunflower HD-Zip II transcription factor, participates in the induction of flowering and in the control of phytohormone-mediated responses to biotic stress.
    Dezar CA; Giacomelli JI; Manavella PA; Ré DA; Alves-Ferreira M; Baldwin IT; Bonaventure G; Chan RL
    J Exp Bot; 2011 Jan; 62(3):1061-76. PubMed ID: 21030388
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Can a late bloomer become an early bird? Tools for flowering time adjustment.
    Milec Z; Valárik M; Bartoš J; Safář J
    Biotechnol Adv; 2014; 32(1):200-14. PubMed ID: 24091290
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photoperiodic control of FT-like gene ClFT initiates flowering in Chrysanthemum lavandulifolium.
    Fu J; Wang L; Wang Y; Yang L; Yang Y; Dai S
    Plant Physiol Biochem; 2014 Jan; 74():230-8. PubMed ID: 24316581
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adaptation of photoperiodic control pathways produces short-day flowering in rice.
    Hayama R; Yokoi S; Tamaki S; Yano M; Shimamoto K
    Nature; 2003 Apr; 422(6933):719-22. PubMed ID: 12700762
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The coincidence of critical day length recognition for florigen gene expression and floral transition under long-day conditions in rice.
    Itoh H; Izawa T
    Mol Plant; 2013 May; 6(3):635-49. PubMed ID: 23416454
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reproductive developmental transcriptome analysis of Tripidium ravennae (Poaceae).
    Maren N; Zhao F; Aryal R; Touchell D; Liu W; Ranney T; Ashrafi H
    BMC Genomics; 2021 Jun; 22(1):483. PubMed ID: 34182921
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice.
    Izawa T; Oikawa T; Sugiyama N; Tanisaka T; Yano M; Shimamoto K
    Genes Dev; 2002 Aug; 16(15):2006-20. PubMed ID: 12154129
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crosstalk in the darkness: bulb vernalization activates meristem transition via circadian rhythm and photoperiodic pathway.
    Ben Michael TE; Faigenboim A; Shemesh-Mayer E; Forer I; Gershberg C; Shafran H; Rabinowitch HD; Kamenetsky-Goldstein R
    BMC Plant Biol; 2020 Feb; 20(1):77. PubMed ID: 32066385
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transcriptome architecture reveals genetic networks of bolting regulation in spinach.
    Abolghasemi R; Haghighi M; Etemadi N; Wang S; Soorni A
    BMC Plant Biol; 2021 Apr; 21(1):179. PubMed ID: 33853527
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Overexpression of
    Liao WY; Lin LF; Lin MD; Hsieh SC; Li AY; Tsay YS; Chou ML
    Int J Mol Sci; 2018 Jul; 19(8):. PubMed ID: 30060634
    [TBL] [Abstract][Full Text] [Related]  

  • 34. OsHAL3, a Blue Light-Responsive Protein, Interacts with the Floral Regulator Hd1 to Activate Flowering in Rice.
    Su L; Shan JX; Gao JP; Lin HX
    Mol Plant; 2016 Feb; 9(2):233-244. PubMed ID: 26537047
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of global gene expression profiles during the flowering initiation process of Lilium × formolongi.
    Li YF; Zhang MF; Zhang M; Jia GX
    Plant Mol Biol; 2017 Jul; 94(4-5):361-379. PubMed ID: 28429252
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Time to flower: interplay between photoperiod and the circadian clock.
    Johansson M; Staiger D
    J Exp Bot; 2015 Feb; 66(3):719-30. PubMed ID: 25371508
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photoperiodic flowering: time measurement mechanisms in leaves.
    Song YH; Shim JS; Kinmonth-Schultz HA; Imaizumi T
    Annu Rev Plant Biol; 2015; 66():441-64. PubMed ID: 25534513
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Balancing forces in the photoperiodic control of flowering.
    Sanchez SE; Cagnola JI; Crepy M; Yanovsky MJ; Casal JJ
    Photochem Photobiol Sci; 2011 Apr; 10(4):451-60. PubMed ID: 21125113
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transcriptomic analysis of differentially expressed genes in the floral transition of the summer flowering chrysanthemum.
    Ren L; Liu T; Cheng Y; Sun J; Gao J; Dong B; Chen S; Chen F; Jiang J
    BMC Genomics; 2016 Aug; 17(1):673. PubMed ID: 27552984
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spatially distinct regulatory roles for gibberellins in the promotion of flowering of Arabidopsis under long photoperiods.
    Porri A; Torti S; Romera-Branchat M; Coupland G
    Development; 2012 Jun; 139(12):2198-209. PubMed ID: 22573618
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.