These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 34211575)

  • 21. Antisense therapies for movement disorders.
    Scoles DR; Pulst SM
    Mov Disord; 2019 Aug; 34(8):1112-1119. PubMed ID: 31283857
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Short (16-mer) locked nucleic acid splice-switching oligonucleotides restore dystrophin production in Duchenne Muscular Dystrophy myotubes.
    Pires VB; Simões R; Mamchaoui K; Carvalho C; Carmo-Fonseca M
    PLoS One; 2017; 12(7):e0181065. PubMed ID: 28742140
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural Diversity of Sense and Antisense RNA Hexanucleotide Repeats Associated with ALS and FTLD.
    Božič T; Zalar M; Rogelj B; Plavec J; Šket P
    Molecules; 2020 Jan; 25(3):. PubMed ID: 31991801
    [TBL] [Abstract][Full Text] [Related]  

  • 24. RNA-Targeted Therapies and Amyotrophic Lateral Sclerosis.
    Mathis S; Le Masson G
    Biomedicines; 2018 Jan; 6(1):. PubMed ID: 29342921
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Antisense Drugs Make Sense for Neurological Diseases.
    Bennett CF; Kordasiewicz HB; Cleveland DW
    Annu Rev Pharmacol Toxicol; 2021 Jan; 61():831-852. PubMed ID: 33035446
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Absorption, Distribution, Metabolism, and Excretion of US Food and Drug Administration-Approved Antisense Oligonucleotide Drugs.
    Migliorati JM; Liu S; Liu A; Gogate A; Nair S; Bahal R; Rasmussen TP; Manautou JE; Zhong XB
    Drug Metab Dispos; 2022 Jun; 50(6):888-897. PubMed ID: 35221287
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Antisense oligonucleotide therapeutics in neurodegenerative diseases: the case of polyglutamine disorders.
    Silva AC; Lobo DD; Martins IM; Lopes SM; Henriques C; Duarte SP; Dodart JC; Nobre RJ; Pereira de Almeida L
    Brain; 2020 Feb; 143(2):407-429. PubMed ID: 31738395
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An Overview of Recent Advances and Clinical Applications of Exon Skipping and Splice Modulation for Muscular Dystrophy and Various Genetic Diseases.
    Rodrigues M; Yokota T
    Methods Mol Biol; 2018; 1828():31-55. PubMed ID: 30171533
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antisense Oligonucleotide Therapy for the Nervous System: From Bench to Bedside with Emphasis on Pediatric Neurology.
    Amanat M; Nemeth CL; Fine AS; Leung DG; Fatemi A
    Pharmaceutics; 2022 Nov; 14(11):. PubMed ID: 36365206
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Therapeutic Potential of Tricyclo-DNA antisense oligonucleotides.
    Goyenvalle A; Leumann C; Garcia L
    J Neuromuscul Dis; 2016 May; 3(2):157-167. PubMed ID: 27854216
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Therapeutic antisense oligonucleotides for movement disorders.
    Doxakis E
    Med Res Rev; 2021 Sep; 41(5):2656-2688. PubMed ID: 32656818
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spinal muscular atrophy: antisense oligonucleotide therapy opens the door to an integrated therapeutic landscape.
    Wood MJA; Talbot K; Bowerman M
    Hum Mol Genet; 2017 Oct; 26(R2):R151-R159. PubMed ID: 28977438
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Clinical approaches in the treatment of Duchenne muscular dystrophy (DMD) using oligonucleotides.
    Bertoni C
    Front Biosci; 2008 Jan; 13():517-27. PubMed ID: 17981565
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Innovative therapeutic approaches for hereditary neuromuscular diseases].
    Kirschner J; Schoser B
    Nervenarzt; 2018 Oct; 89(10):1115-1122. PubMed ID: 30171303
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Progress in treatment and newborn screening for Duchenne muscular dystrophy and spinal muscular atrophy.
    Ke Q; Zhao ZY; Mendell JR; Baker M; Wiley V; Kwon JM; Alfano LN; Connolly AM; Jay C; Polari H; Ciafaloni E; Qi M; Griggs RC; Gatheridge MA
    World J Pediatr; 2019 Jun; 15(3):219-225. PubMed ID: 30904991
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antisense oligonucleotide therapies for Amyotrophic Lateral Sclerosis: Existing and emerging targets.
    Klim JR; Vance C; Scotter EL
    Int J Biochem Cell Biol; 2019 May; 110():149-153. PubMed ID: 30904737
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antisense oligonucleotides in therapy for neurodegenerative disorders.
    Evers MM; Toonen LJ; van Roon-Mom WM
    Adv Drug Deliv Rev; 2015 Jun; 87():90-103. PubMed ID: 25797014
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Precision Medicine through Antisense Oligonucleotide-Mediated Exon Skipping.
    Li D; Mastaglia FL; Fletcher S; Wilton SD
    Trends Pharmacol Sci; 2018 Nov; 39(11):982-994. PubMed ID: 30282590
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genetic neuromuscular disorders: living the era of a therapeutic revolution. Part 2: diseases of motor neuron and skeletal muscle.
    Vita G; Vita GL; Musumeci O; Rodolico C; Messina S
    Neurol Sci; 2019 Apr; 40(4):671-681. PubMed ID: 30805745
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tips to Design Effective Splice-Switching Antisense Oligonucleotides for Exon Skipping and Exon Inclusion.
    Maruyama R; Yokota T
    Methods Mol Biol; 2018; 1828():79-90. PubMed ID: 30171536
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.