BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 34211798)

  • 1. Discrimination of Fresh Tobacco Leaves with Different Maturity Levels by Near-Infrared (NIR) Spectroscopy and Deep Learning.
    Chen Y; Bin J; Zou C; Ding M
    J Anal Methods Chem; 2021; 2021():9912589. PubMed ID: 34211798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discrimination of white teas produced from fresh leaves with different maturity by near-infrared spectroscopy.
    Li C; Zong B; Guo H; Luo Z; He P; Gong S; Fan F
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Feb; 227():117697. PubMed ID: 31699592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-Field Tobacco Leaf Maturity Detection with an Enhanced MobileNetV1: Incorporating a Feature Pyramid Network and Attention Mechanism.
    Zhang Y; Zhu Y; Liu X; Lu Y; Liu C; Zhou X; Fan W
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Study on the Determination of the Maturity Level of Tobacco Leaf Based on In-Situ Spectral Measurement].
    Diao H; Wu YM; Yang YH; Ouyang J; Li JH; Lao CL; Xu XY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jun; 36(6):1826-30. PubMed ID: 30052400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discrimination of Tetrastigma hemsleyanum according to geographical origin by near-infrared spectroscopy combined with a deep learning approach.
    Zhou D; Yu Y; Hu R; Li Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Sep; 238():118380. PubMed ID: 32388414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discrimination of Maturity Stages of Cabernet Sauvignon Wine Grapes Using Visible-Near-Infrared Spectroscopy.
    Zhou X; Liu W; Li K; Lu D; Su Y; Ju Y; Fang Y; Yang J
    Foods; 2023 Dec; 12(23):. PubMed ID: 38231878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heavy metal Hg stress detection in tobacco plant using hyperspectral sensing and data-driven machine learning methods.
    Yu K; Fang S; Zhao Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jan; 245():118917. PubMed ID: 32949945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Lightweight convolutional neural network for nicotine prediction in tobacco by near-infrared spectroscopy.
    Wang D; Zhao F; Wang R; Guo J; Zhang C; Liu H; Wang Y; Zong G; Zhao L; Feng W
    Front Plant Sci; 2023; 14():1138693. PubMed ID: 37251760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Convolutional Neural Network Based on Extreme Learning Machine for Maritime Ships Recognition in Infrared Images.
    Khellal A; Ma H; Fei Q
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29747439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapidly detecting fennel origin of the near-infrared spectroscopy based on extreme learning machine.
    Zuo E; Sun L; Yan J; Chen C; Chen C; Lv X
    Sci Rep; 2022 Aug; 12(1):13593. PubMed ID: 35948651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification Modeling Method for Near-Infrared Spectroscopy of Tobacco Based on Multimodal Convolution Neural Networks.
    Zhang L; Ding X; Hou R
    J Anal Methods Chem; 2020; 2020():9652470. PubMed ID: 32104610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NIR spectroscopy combined with 1D-convolutional neural network for breast cancerization analysis and diagnosis.
    Shang H; Shang L; Wu J; Xu Z; Zhou S; Wang Z; Wang H; Yin J
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Feb; 287(Pt 1):121990. PubMed ID: 36327802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of extreme learning machine for classification of individual and combined finger movements using electromyography on amputees and non-amputees.
    Anam K; Al-Jumaily A
    Neural Netw; 2017 Jan; 85():51-68. PubMed ID: 27814466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations.
    Vu H; Kim HC; Jung M; Lee JH
    Neuroimage; 2020 Dec; 223():117328. PubMed ID: 32896633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Basic research for identification and classification of organophosphorus pesticides in water based on ultraviolet-visible spectroscopy information.
    Shao C; Ma R; Yan Z; Li C; Hong Y; Li Y; Chen Y
    Environ Sci Pollut Res Int; 2024 Jul; ():. PubMed ID: 38976190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Learning for Plant Species Classification Using Leaf Vein Morphometric.
    Tan JW; Chang SW; Abdul-Kareem S; Yap HJ; Yong KT
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(1):82-90. PubMed ID: 29994129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pattern recognition of Chinese flue-cured tobaccos by an improved and simplified K-nearest neighbors classification algorithm on near infrared spectra.
    Ni LJ; Zhang LG; Xie J; Luo JQ
    Anal Chim Acta; 2009 Feb; 633(1):43-50. PubMed ID: 19110114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-Destructive Discrimination of Sunflower Seeds with Different Internal Mildew Grades by Fusion of Near-Infrared Diffuse Reflectance and Transmittance Spectra Combined with 1D-CNN.
    Liu J; Fan S; Cheng W; Yang Y; Li X; Wang Q; Liu B; Xu Z; Wu Y
    Foods; 2023 Jan; 12(2):. PubMed ID: 36673386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of geographical origin and icariin content of Herba Epimedii using near infrared spectroscopy and chemometrics.
    Yang Y; Wu Y; Li W; Liu X; Zheng J; Zhang W; Chen Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Feb; 191():233-240. PubMed ID: 29040929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast learning method for convolutional neural networks using extreme learning machine and its application to lane detection.
    Kim J; Kim J; Jang GJ; Lee M
    Neural Netw; 2017 Mar; 87():109-121. PubMed ID: 28110106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.