These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 34212162)
1. Insight into the effect of the configuration entropy of additives on the Seebeck coefficient. Nandal V; Wei Q; Seki K Phys Chem Chem Phys; 2021 Jul; 23(27):14803-14810. PubMed ID: 34212162 [TBL] [Abstract][Full Text] [Related]
2. Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest. Duan J; Feng G; Yu B; Li J; Chen M; Yang P; Feng J; Liu K; Zhou J Nat Commun; 2018 Dec; 9(1):5146. PubMed ID: 30514952 [TBL] [Abstract][Full Text] [Related]
3. Seebeck, Peltier, and Soret effects: On different formalisms for transport equations in thermogalvanic cells. Kjelstrup S; Kristiansen KR; Gunnarshaug AF; Bedeaux D J Chem Phys; 2023 Jan; 158(2):020901. PubMed ID: 36641395 [TBL] [Abstract][Full Text] [Related]
4. Thermoelectrochemical Cells Based on Ferricyanide/Ferrocyanide/Guanidinium: Application and Challenges. Jiang L; Kirihara K; Nandal V; Seki K; Mukaida M; Horike S; Wei Q ACS Appl Mater Interfaces; 2022 Jan; ():. PubMed ID: 35075902 [TBL] [Abstract][Full Text] [Related]
5. Thermo-electrochemical redox flow cycle for continuous conversion of low-grade waste heat to power. Bleeker J; Reichert S; Veerman J; Vermaas DA Sci Rep; 2022 May; 12(1):7993. PubMed ID: 35568713 [TBL] [Abstract][Full Text] [Related]
6. Regulating Thermogalvanic Effect and Mechanical Robustness via Redox Ions for Flexible Quasi-Solid-State Thermocells. Peng P; Zhou J; Liang L; Huang X; Lv H; Liu Z; Chen G Nanomicro Lett; 2022 Mar; 14(1):81. PubMed ID: 35333992 [TBL] [Abstract][Full Text] [Related]
7. Can charged colloidal particles increase the thermoelectric energy conversion efficiency? Salez TJ; Huang BT; Rietjens M; Bonetti M; Wiertel-Gasquet C; Roger M; Filomeno CL; Dubois E; Perzynski R; Nakamae S Phys Chem Chem Phys; 2017 Apr; 19(14):9409-9416. PubMed ID: 28327718 [TBL] [Abstract][Full Text] [Related]
8. Exploring Pyrazine-Based Organic Redox Couples for Enhanced Thermoelectric Performance in Wearable Energy Harvesters. Lee CY; Hsu CC; Wang CH; Jeng US; Tung SH; Hu CC; Liu CL Small; 2024 Oct; ():e2407622. PubMed ID: 39358979 [TBL] [Abstract][Full Text] [Related]
9. Low-Grade Thermal Energy Harvesting and Self-Powered Sensing Based on Thermogalvanic Hydrogels. Zhang J; Bai C; Wang Z; Liu X; Li X; Cui X Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677217 [TBL] [Abstract][Full Text] [Related]
10. High Seebeck coefficient thermogalvanic cells Laws K; Buckingham MA; Farleigh M; Ma M; Aldous L Chem Commun (Camb); 2023 Feb; 59(16):2323-2326. PubMed ID: 36752070 [TBL] [Abstract][Full Text] [Related]
11. Significant Enhancement in the Seebeck Coefficient and Power Factor of p-Type Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) through the Incorporation of n-Type MXene. Guan X; Feng W; Wang X; Venkatesh R; Ouyang J ACS Appl Mater Interfaces; 2020 Mar; 12(11):13013-13020. PubMed ID: 32097550 [TBL] [Abstract][Full Text] [Related]
12. Chaotropic Effect-Boosted Thermogalvanic Ionogel Thermocells for All-Weather Power Generation. Yang M; Hu Y; Wang X; Chen H; Yu J; Li W; Li R; Yan F Adv Mater; 2024 Apr; 36(16):e2312249. PubMed ID: 38193634 [TBL] [Abstract][Full Text] [Related]
13. Substituted ferrocenes and iodine as synergistic thermoelectrochemical heat harvesting redox couples in ionic liquids. Anari EH; Romano M; Teh WX; Black JJ; Jiang E; Chen J; To TQ; Panchompoo J; Aldous L Chem Commun (Camb); 2016 Jan; 52(4):745-8. PubMed ID: 26563939 [TBL] [Abstract][Full Text] [Related]
14. High seebeck coefficient in middle-temperature thermocell with deep eutectic solvent. Antariksa NF; Yamada T; Kimizuka N Sci Rep; 2021 Jun; 11(1):11929. PubMed ID: 34099827 [TBL] [Abstract][Full Text] [Related]
15. Exploring the local solvation structure of redox molecules in a mixed solvent for increasing the Seebeck coefficient of thermocells. Inoue H; Zhou H; Ando H; Nakagawa S; Yamada T Chem Sci; 2023 Dec; 15(1):146-153. PubMed ID: 38131095 [TBL] [Abstract][Full Text] [Related]
16. The effect of 3d-electron configuration entropy on the temperature coefficient of redox potential in Co Iwaizumi H; Fujiwara Y; Fukuzumi Y; Moritomo Y Dalton Trans; 2019 Feb; 48(6):1964-1968. PubMed ID: 30465665 [TBL] [Abstract][Full Text] [Related]
17. Thermoelectrochemical Seebeck coefficient and viscosity of Co-complex electrolytes rationalized by the Einstein relation, Jones-Dole Cho Y; Nagatsuka S; Murakami Y Phys Chem Chem Phys; 2022 Sep; 24(35):21396-21405. PubMed ID: 36047310 [TBL] [Abstract][Full Text] [Related]
18. Thermoelectricity and Thermodiffusion in Magnetic Nanofluids: Entropic Analysis. Salez TJ; Nakamae S; Perzynski R; Mériguet G; Cebers A; Roger M Entropy (Basel); 2018 May; 20(6):. PubMed ID: 33265495 [TBL] [Abstract][Full Text] [Related]
19. Self-assembled monolayers for electrostatic electrocatalysis and enhanced electrode stability in thermogalvanic cells. Laws K; Buckingham MA; Aldous L Chem Sci; 2024 May; 15(18):6958-6964. PubMed ID: 38725507 [TBL] [Abstract][Full Text] [Related]
20. Quasi-solid-State Electrolytes for Low-Grade Thermal Energy Harvesting using a Cobalt Redox Couple. Taheri A; MacFarlane DR; Pozo-Gonzalo C; Pringle JM ChemSusChem; 2018 Aug; 11(16):2788-2796. PubMed ID: 29873193 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]