These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
409 related articles for article (PubMed ID: 34212255)
1. Glaucoma detection in Latino population through OCT's RNFL thickness map using transfer learning. Olivas LG; Alférez GH; Castillo J Int Ophthalmol; 2021 Nov; 41(11):3727-3741. PubMed ID: 34212255 [TBL] [Abstract][Full Text] [Related]
2. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: analysis of the retinal nerve fiber layer map for glaucoma detection. Leung CK; Lam S; Weinreb RN; Liu S; Ye C; Liu L; He J; Lai GW; Li T; Lam DS Ophthalmology; 2010 Sep; 117(9):1684-91. PubMed ID: 20663563 [TBL] [Abstract][Full Text] [Related]
3. Assessment of a Segmentation-Free Deep Learning Algorithm for Diagnosing Glaucoma From Optical Coherence Tomography Scans. Thompson AC; Jammal AA; Berchuck SI; Mariottoni EB; Medeiros FA JAMA Ophthalmol; 2020 Apr; 138(4):333-339. PubMed ID: 32053142 [TBL] [Abstract][Full Text] [Related]
4. Detection of Progressive Glaucomatous Optic Nerve Damage on Fundus Photographs with Deep Learning. Medeiros FA; Jammal AA; Mariottoni EB Ophthalmology; 2021 Mar; 128(3):383-392. PubMed ID: 32735906 [TBL] [Abstract][Full Text] [Related]
5. From Machine to Machine: An OCT-Trained Deep Learning Algorithm for Objective Quantification of Glaucomatous Damage in Fundus Photographs. Medeiros FA; Jammal AA; Thompson AC Ophthalmology; 2019 Apr; 126(4):513-521. PubMed ID: 30578810 [TBL] [Abstract][Full Text] [Related]
6. Using Deep Learning and Transfer Learning to Accurately Diagnose Early-Onset Glaucoma From Macular Optical Coherence Tomography Images. Asaoka R; Murata H; Hirasawa K; Fujino Y; Matsuura M; Miki A; Kanamoto T; Ikeda Y; Mori K; Iwase A; Shoji N; Inoue K; Yamagami J; Araie M Am J Ophthalmol; 2019 Feb; 198():136-145. PubMed ID: 30316669 [TBL] [Abstract][Full Text] [Related]
7. Diagnostic Accuracy of Wide-Field Map from Swept-Source Optical Coherence Tomography for Primary Open-Angle Glaucoma in Myopic Eyes. Kim YW; Lee J; Kim JS; Park KH Am J Ophthalmol; 2020 Oct; 218():182-191. PubMed ID: 32574775 [TBL] [Abstract][Full Text] [Related]
8. Comparison of Spectralis-OCT, GDxVCC and GDxECC in assessing retinal nerve fiber layer (RNFL) in glaucomatous patients. Schallenberg M; Dekowski D; Kremmer S; Selbach JM; Steuhl KP Graefes Arch Clin Exp Ophthalmol; 2013 May; 251(5):1343-53. PubMed ID: 23250480 [TBL] [Abstract][Full Text] [Related]
9. Diagnosing Glaucoma With Spectral-Domain Optical Coherence Tomography Using Deep Learning Classifier. Lee J; Kim YK; Park KH; Jeoung JW J Glaucoma; 2020 Apr; 29(4):287-294. PubMed ID: 32053552 [TBL] [Abstract][Full Text] [Related]
10. Serial Combined Wide-Field Optical Coherence Tomography Maps for Detection of Early Glaucomatous Structural Progression. Lee WJ; Kim TJ; Kim YK; Jeoung JW; Park KH JAMA Ophthalmol; 2018 Oct; 136(10):1121-1127. PubMed ID: 30054615 [TBL] [Abstract][Full Text] [Related]
12. Detecting glaucoma based on spectral domain optical coherence tomography imaging of peripapillary retinal nerve fiber layer: a comparison study between hand-crafted features and deep learning model. Zheng C; Xie X; Huang L; Chen B; Yang J; Lu J; Qiao T; Fan Z; Zhang M Graefes Arch Clin Exp Ophthalmol; 2020 Mar; 258(3):577-585. PubMed ID: 31811363 [TBL] [Abstract][Full Text] [Related]
13. Glaucoma classification based on scanning laser ophthalmoscopic images using a deep learning ensemble method. Sułot D; Alonso-Caneiro D; Ksieniewicz P; Krzyzanowska-Berkowska P; Iskander DR PLoS One; 2021; 16(6):e0252339. PubMed ID: 34086716 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of optic nerve head and retinal nerve fiber layer in early and advance glaucoma using frequency-domain optical coherence tomography. Li S; Wang X; Li S; Wu G; Wang N Graefes Arch Clin Exp Ophthalmol; 2010 Mar; 248(3):429-34. PubMed ID: 19937335 [TBL] [Abstract][Full Text] [Related]
15. Ability of cirrus high-definition spectral-domain optical coherence tomography clock-hour, deviation, and thickness maps in detecting photographic retinal nerve fiber layer abnormalities. Hwang YH; Kim YY; Kim HK; Sohn YH Ophthalmology; 2013 Jul; 120(7):1380-7. PubMed ID: 23541761 [TBL] [Abstract][Full Text] [Related]
16. Comparison of diagnostic ability of standard automated perimetry, short wavelength automated perimetry, retinal nerve fiber layer thickness analysis and ganglion cell layer thickness analysis in early detection of glaucoma. Kalyani VK; Bharucha KM; Goyal N; Deshpande MM Indian J Ophthalmol; 2021 May; 69(5):1108-1112. PubMed ID: 33913843 [TBL] [Abstract][Full Text] [Related]
17. Combining nerve fiber layer parameters to optimize glaucoma diagnosis with optical coherence tomography. Lu AT; Wang M; Varma R; Schuman JS; Greenfield DS; Smith SD; Huang D; Ophthalmology; 2008 Aug; 115(8):1352-7, 1357.e1-2. PubMed ID: 18514318 [TBL] [Abstract][Full Text] [Related]
18. Baseline optical coherence tomography predicts the development of glaucomatous change in glaucoma suspects. Lalezary M; Medeiros FA; Weinreb RN; Bowd C; Sample PA; Tavares IM; Tafreshi A; Zangwill LM Am J Ophthalmol; 2006 Oct; 142(4):576-82. PubMed ID: 17011848 [TBL] [Abstract][Full Text] [Related]
19. Correlation of localized glaucomatous visual field defects and spectral domain optical coherence tomography retinal nerve fiber layer thinning using a modified structure-function map for OCT. Wu H; de Boer JF; Chen L; Chen TC Eye (Lond); 2015 Apr; 29(4):525-33. PubMed ID: 25633881 [TBL] [Abstract][Full Text] [Related]
20. Diagnostic Ability of Wide-field Retinal Nerve Fiber Layer Maps Using Swept-Source Optical Coherence Tomography for Detection of Preperimetric and Early Perimetric Glaucoma. Lee WJ; Na KI; Kim YK; Jeoung JW; Park KH J Glaucoma; 2017 Jun; 26(6):577-585. PubMed ID: 28368998 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]