These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 34212274)

  • 101. Evaluation of zidovudine encapsulated ethylcellulose microspheres prepared by water-in-oil-in-oil (w/o/o) double emulsion solvent diffusion technique.
    Das MK; Rao KR
    Acta Pol Pharm; 2006; 63(2):141-8. PubMed ID: 17514878
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Hierarchical Biomolecular Emulsions Using 3-D Microfluidics with Uniform Surface Chemistry.
    Toprakcioglu Z; Levin A; Knowles TPJ
    Biomacromolecules; 2017 Nov; 18(11):3642-3651. PubMed ID: 28959882
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Particle-Stabilized Powdered Water-in-Oil Emulsions.
    Binks BP; Tyowua AT
    Langmuir; 2016 Apr; 32(13):3110-5. PubMed ID: 27002604
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Highly Surface-Active Chaperonin Nanobarrels for Oil-in-Water Pickering Emulsions and Delivery of Lipophilic Compounds.
    Xu B; Liu C; Sun H; Wang X; Huang F
    J Agric Food Chem; 2019 Sep; 67(36):10155-10164. PubMed ID: 31433944
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Ibuprofen-in-cyclodextrin-in-W/O/W emulsion - Improving the initial and long-term encapsulation efficiency of a model active ingredient.
    Hattrem MN; Kristiansen KA; Aachmann FL; Dille MJ; Draget KI
    Int J Pharm; 2015 Jun; 487(1-2):1-7. PubMed ID: 25839416
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Influence of a lipophilic drug on the stability of emulsions: an important approach on the development of lipidic carriers.
    Formiga FR; Fonseca IA; Souza KB; Silva AK; Macedo JP; Araújo IB; Soares LA; Egito ES
    Int J Pharm; 2007 Nov; 344(1-2):158-60. PubMed ID: 17614224
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Oil-frozen W₁/O/W₂ double emulsions for dermal biomacromolecular delivery containing ethanol as chemical penetration enhancer.
    Jaimes-Lizcano YA; Lawson LB; Papadopoulos KD
    J Pharm Sci; 2011 Apr; 100(4):1398-406. PubMed ID: 20960570
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Influence of the emulsifier on nanostructure and clinical application of liquid crystalline emulsions.
    Teeranachaideekul V; Soontaranon S; Sukhasem S; Chantasart D; Wongrakpanich A
    Sci Rep; 2023 Mar; 13(1):4185. PubMed ID: 36918671
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Use of low-field NMR and rheology to evaluate the microstructure and stability of a poly(d,l-lactide-co-glycolide)-based W/O emulsion to be processed by spray drying.
    Jurić Simčić A; Abrami M; Erak I; Paladin I; Cetina Čižmek B; Hafner A; Grassi M; Filipović-Grčić J
    Int J Pharm; 2023 Jan; 631():122471. PubMed ID: 36509222
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Stability assessment of injectable castor oil-based nano-sized emulsion containing cationic droplets stabilized by poloxamer-chitosan emulsifier films.
    Tamilvanan S; Kumar BA; Senthilkumar SR; Baskar R; Sekharan TR
    AAPS PharmSciTech; 2010 Jun; 11(2):904-9. PubMed ID: 20496017
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Emulsion gels loaded with pancreatic lipase: Preparation from spontaneously made emulsions and assessment of the rheological, microscopic and cargo release properties.
    Moayedzadeh S; Asl AK; Gunasekaran S; Madadlou A
    Food Res Int; 2022 Jun; 156():111306. PubMed ID: 35651066
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Temperature-induced protein release from water-in-oil-in-water double emulsions.
    Rojas EC; Staton JA; John VT; Papadopoulos KD
    Langmuir; 2008 Jul; 24(14):7154-60. PubMed ID: 18543998
    [TBL] [Abstract][Full Text] [Related]  

  • 113. A solid-in-oil-in-water emulsion: An adjuvant-based immune-carrier enhances vaccine effect.
    Tahara Y; Mizuno R; Nishimura T; Mukai SA; Wakabayashi R; Kamiya N; Akiyoshi K; Goto M
    Biomaterials; 2022 Mar; 282():121385. PubMed ID: 35093824
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Liposomes in double-emulsion globules.
    Wang Q; Tan G; Lawson LB; John VT; Papadopoulos KD
    Langmuir; 2010 Mar; 26(5):3225-31. PubMed ID: 19958007
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Stability, Microstructure, and Rheological Properties of CaCO
    Zhang J; Li G; Xu D; Cao Y
    Foods; 2021 Sep; 10(9):. PubMed ID: 34574326
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Preparation and stability mechanisms of double emulsions stabilized by gelatinized native starch.
    Yang J; Gu Z; Cheng L; Li Z; Li C; Ban X; Hong Y
    Carbohydr Polym; 2021 Jun; 262():117926. PubMed ID: 33838805
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Water-in-oil emulsions enriched with alpha-linolenic acid in diacylglycerol form: Stability, formation mechanism and in vitro digestion analysis.
    Xu Q; Qin X; Lan D; Liu X; Yang B; Liao S; Wang W; Wang Y
    Food Chem; 2022 Oct; 391():133201. PubMed ID: 35609461
    [TBL] [Abstract][Full Text] [Related]  

  • 118. A Preparation Technique of Fine S/O/W Emulsions for Protein Delivery Formed with Solid Fat.
    Yoshitaka K; Toorisaka E
    J Oleo Sci; 2022; 71(10):1453-1458. PubMed ID: 36184460
    [TBL] [Abstract][Full Text] [Related]  

  • 119. A programmable microenvironment for cellular studies via microfluidics-generated double emulsions.
    Zhang Y; Ho YP; Chiu YL; Chan HF; Chlebina B; Schuhmann T; You L; Leong KW
    Biomaterials; 2013 Jun; 34(19):4564-72. PubMed ID: 23522800
    [TBL] [Abstract][Full Text] [Related]  

  • 120. Novel Water-in-Oil Emulsions for Co-Loading Sialic Acid and Chitosan: Formulation, Characterization, and Stability Evaluation.
    Pang M; Zheng D; Jia P; Cao L
    Foods; 2022 Mar; 11(6):. PubMed ID: 35327295
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.