BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

947 related articles for article (PubMed ID: 34212581)

  • 21. Fabrication of Paper-Based Microfluidics by Spray on Printed Paper.
    Juang YJ; Hsu SK
    Polymers (Basel); 2022 Feb; 14(3):. PubMed ID: 35160629
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Research progress on analysis of human papillomavirus by microchip capillary electrophoresis].
    Lin X; Wang C; Lin JM
    Se Pu; 2020 Oct; 38(10):1179-1188. PubMed ID: 34213114
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Smartphone-coupled three-layered paper-based microfluidic chips demonstrating stereoscopic capillary-driven fluid transport towards colorimetric detection of pesticides.
    Wu H; Chen J; Yang Y; Yu W; Chen Y; Lin P; Liang K
    Anal Bioanal Chem; 2022 Feb; 414(5):1759-1772. PubMed ID: 35059790
    [TBL] [Abstract][Full Text] [Related]  

  • 24. User-Friendly Microfabrication Method for Complex Topological Structure and Three-Dimensional Microchannel with the Application Prospect in Polymerase Chain Reaction (PCR).
    Wang K; He L; Manz A; Wu W
    Anal Chem; 2021 Jan; 93(3):1523-1528. PubMed ID: 33326206
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D Printing of Individualized Microfluidic Chips with DLP-Based Printer.
    Qiu J; Li J; Guo Z; Zhang Y; Nie B; Qi G; Zhang X; Zhang J; Wei R
    Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959581
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Road to Unconventional Detections: Paper-Based Microfluidic Chips.
    Jin Y; Aziz AUR; Wu B; Lv Y; Zhang H; Li N; Liu B; Zhang Z
    Micromachines (Basel); 2022 Oct; 13(11):. PubMed ID: 36363856
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Integrating of analytical techniques with enzyme-mimicking nanomaterials for the fabrication of microfluidic systems for biomedical analysis.
    Shukhratovich Abdullaev S; H Althomali R; Raza Khan A; Sanaan Jabbar H; Abosoda M; Ihsan A; Aggarwal S; Mustafa YF; Hammoud Khlewee I; Jabbar AM
    Talanta; 2024 Jun; 273():125896. PubMed ID: 38479027
    [TBL] [Abstract][Full Text] [Related]  

  • 28. One-step fabrication of a self-driven point-of-care chip by femtosecond laser direct writing and its application in cancer cell H
    Wang Y; Lai B; Yu Z; Xu Z
    Talanta; 2024 Jun; 278():126483. PubMed ID: 38963977
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Simple and Low-Cost Method for Fabrication of Polydimethylsiloxane Microfludic Chips.
    Sun L; Zhang L; Yang X; Zhang B; Yin Z
    J Nanosci Nanotechnol; 2021 Nov; 21(11):5635-5641. PubMed ID: 33980373
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microfluidic Paper-Based Analytical Devices for the Determination of Food Contaminants: Developments and Applications.
    Wang M; Cui J; Wang Y; Yang L; Jia Z; Gao C; Zhang H
    J Agric Food Chem; 2022 Jul; 70(27):8188-8206. PubMed ID: 35786878
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recent advances in surface-enhanced Raman scattering detection technology for microfluidic chips.
    Chen L; Choo J
    Electrophoresis; 2008 May; 29(9):1815-28. PubMed ID: 18384070
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: A review.
    Xia Y; Si J; Li Z
    Biosens Bioelectron; 2016 Mar; 77():774-89. PubMed ID: 26513284
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rapid Assembly of Cellulose Microfibers into Translucent and Flexible Microfluidic Paper-Based Analytical Devices via Wettability Patterning.
    Ma P; Wang S; Wang J; Wang Y; Dong Y; Li S; Su H; Chen P; Feng X; Li Y; Du W; Liu BF
    Anal Chem; 2022 Oct; 94(39):13332-13341. PubMed ID: 36121740
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fully Inkjet Printing Preparation of a Carbon Dots Multichannel Microfluidic Paper-Based Sensor and Its Application in Food Additive Detection.
    Deng Y; Li Q; Zhou Y; Qian J
    ACS Appl Mater Interfaces; 2021 Dec; 13(48):57084-57091. PubMed ID: 34797049
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Advancements in the research of finger-actuated POCT chips.
    Du Z; Chen L; Yang S
    Mikrochim Acta; 2023 Dec; 191(1):65. PubMed ID: 38158397
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Single step and mask-free 3D wax printing of microfluidic paper-based analytical devices for glucose and nitrite assays.
    Chiang CK; Kurniawan A; Kao CY; Wang MJ
    Talanta; 2019 Mar; 194():837-845. PubMed ID: 30609613
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Application of Microfluidic Chips in the Detection of Airborne Microorganisms.
    Wang J; Yang L; Wang H; Wang L
    Micromachines (Basel); 2022 Sep; 13(10):. PubMed ID: 36295928
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent developments in microfluidic paper-based analytical devices for pharmaceutical analysis.
    Khamcharoen W; Kaewjua K; Yomthiangthae P; Anekrattanasap A; Chailapakul O; Siangproh W
    Curr Top Med Chem; 2022 Oct; ():. PubMed ID: 36305123
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent Progress of Surface-Enhanced Raman Spectroscopy for Bacteria Detection.
    Liu L; Ma W; Wang X; Li S
    Biosensors (Basel); 2023 Mar; 13(3):. PubMed ID: 36979564
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rotational Paper-Based Microfluidic-Chip Device for Multiplexed and Simultaneous Fluorescence Detection of Phenolic Pollutants Based on a Molecular-Imprinting Technique.
    Qi J; Li B; Wang X; Fu L; Luo L; Chen L
    Anal Chem; 2018 Oct; 90(20):11827-11834. PubMed ID: 30136577
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 48.