BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 34212856)

  • 21. Introducing a Gene Knockout Directly Into the Amastigote Stage of Trypanosoma cruzi Using the CRISPR/Cas9 System.
    Akutsu Y; Doi M; Furukawa K; Takagi Y
    J Vis Exp; 2019 Jul; (149):. PubMed ID: 31424432
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular tools to regulate gene expression in Trypanosoma cruzi.
    Trajano-Silva LAM; Mule SN; Palmisano G
    Adv Clin Chem; 2024; 120():169-190. PubMed ID: 38762241
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantitative proteomics of Trypanosoma cruzi during metacyclogenesis.
    de Godoy LM; Marchini FK; Pavoni DP; Rampazzo Rde C; Probst CM; Goldenberg S; Krieger MA
    Proteomics; 2012 Aug; 12(17):2694-703. PubMed ID: 22761176
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Involvement of STI1 protein in the differentiation process of Trypanosoma cruzi.
    Schmidt JC; Manhães L; Fragoso SP; Pavoni DP; Krieger MA
    Parasitol Int; 2018 Apr; 67(2):131-139. PubMed ID: 29081390
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel role of Rab11 in trafficking GPI-anchored trans-sialidase to the plasma membrane of Trypanosoma cruzi.
    Niyogi S; Docampo R
    Small GTPases; 2015; 6(1):8-10. PubMed ID: 25862161
    [TBL] [Abstract][Full Text] [Related]  

  • 26. From membrane tension to channel gating: A principal energy transfer mechanism for mechanosensitive channels.
    Zhang XC; Liu Z; Li J
    Protein Sci; 2016 Nov; 25(11):1954-1964. PubMed ID: 27530280
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CRISPR-Cas9-mediated single-gene and gene family disruption in Trypanosoma cruzi.
    Peng D; Kurup SP; Yao PY; Minning TA; Tarleton RL
    mBio; 2014 Dec; 6(1):e02097-14. PubMed ID: 25550322
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recently differentiated epimastigotes from Trypanosoma cruzi are infective to the mammalian host.
    Kessler RL; Contreras VT; Marliére NP; Aparecida Guarneri A; Villamizar Silva LH; Mazzarotto GACA; Batista M; Soccol VT; Krieger MA; Probst CM
    Mol Microbiol; 2017 Jun; 104(5):712-736. PubMed ID: 28240790
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Trypanothione synthetase confers growth, survival advantage and resistance to anti-protozoal drugs in Trypanosoma cruzi.
    Mesías AC; Sasoni N; Arias DG; Pérez Brandán C; Orban OCF; Kunick C; Robello C; Comini MA; Garg NJ; Zago MP
    Free Radic Biol Med; 2019 Jan; 130():23-34. PubMed ID: 30359758
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Treatment of Trypanosoma cruzi with 2-bromopalmitate alters morphology, endocytosis, differentiation and infectivity.
    Batista CM; Kessler RL; Eger I; Soares MJ
    BMC Cell Biol; 2018 Aug; 19(1):19. PubMed ID: 30170543
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Defining the role of a FYVE domain in the localization and activity of a cAMP phosphodiesterase implicated in osmoregulation in Trypanosoma cruzi.
    Schoijet AC; Miranda K; Medeiros LC; de Souza W; Flawiá MM; Torres HN; Pignataro OP; Docampo R; Alonso GD
    Mol Microbiol; 2011 Jan; 79(1):50-62. PubMed ID: 21166893
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Experimental evidences that P21 protein controls Trypanosoma cruzi replication and modulates the pathogenesis of infection.
    Teixeira TL; Castilhos P; Rodrigues CC; da Silva AA; Brígido RT; Teixeira SC; Borges BC; Dos Santos MA; Martins FA; Santos PCF; Servato JPS; Silva MS; da Silva MJB; Elias MC; da Silva CV
    Microb Pathog; 2019 Oct; 135():103618. PubMed ID: 31310832
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inositol 1,4,5-trisphosphate receptor regulates replication, differentiation, infectivity and virulence of the parasitic protist Trypanosoma cruzi.
    Hashimoto M; Enomoto M; Morales J; Kurebayashi N; Sakurai T; Hashimoto T; Nara T; Mikoshiba K
    Mol Microbiol; 2013 Mar; 87(6):1133-50. PubMed ID: 23320762
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Translational repression by an RNA-binding protein promotes differentiation to infective forms in Trypanosoma cruzi.
    Romaniuk MA; Frasch AC; Cassola A
    PLoS Pathog; 2018 Jun; 14(6):e1007059. PubMed ID: 29864162
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional analysis and importance for host cell infection of the Ca
    Chiurillo MA; Lander N; Bertolini MS; Vercesi AE; Docampo R
    Mol Biol Cell; 2019 Jul; 30(14):1676-1690. PubMed ID: 31091170
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Influence of Recombinational Processes to Induce Dormancy in
    Resende BC; Oliveira ACS; Guañabens ACP; Repolês BM; Santana V; Hiraiwa PM; Pena SDJ; Franco GR; Macedo AM; Tahara EB; Fragoso SP; Andrade LO; Machado CR
    Front Cell Infect Microbiol; 2020; 10():5. PubMed ID: 32117793
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Knockout of the CCCH zinc finger protein TcZC3H31 blocks Trypanosoma cruzi differentiation into the infective metacyclic form.
    Alcantara MV; Kessler RL; Gonçalves REG; Marliére NP; Guarneri AA; Picchi GFA; Fragoso SP
    Mol Biochem Parasitol; 2018 Apr; 221():1-9. PubMed ID: 29409763
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Laboratory techniques to obtain different forms of Trypanosoma cruzi: applications to wild-type and genetically modified parasites.
    de Cámara Mde L; Bouvier LA; Miranda MR; Reigada C; Pereira CA
    Folia Parasitol (Praha); 2013 Nov; 60(5):406-10. PubMed ID: 24471281
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Functional Analysis of the Cyclophilin Repertoire in the Protozoan Parasite
    Perrone AE; Milduberger N; Fuchs AG; Bustos PL; Bua J
    Biomolecules; 2018 Oct; 8(4):. PubMed ID: 30384485
    [No Abstract]   [Full Text] [Related]  

  • 40. Identification and analysis of putative homologues of mechanosensitive channels in pathogenic protozoa.
    Prole DL; Taylor CW
    PLoS One; 2013; 8(6):e66068. PubMed ID: 23785469
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.