These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 34213265)
1. [Single-molecule electrophoresis: renewed understanding of nanopore electrochemistry]. Zhang WW; Ying YL; Long YT Se Pu; 2020 Sep; 38(9):993-998. PubMed ID: 34213265 [TBL] [Abstract][Full Text] [Related]
2. Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis. Cao C; Long YT Acc Chem Res; 2018 Feb; 51(2):331-341. PubMed ID: 29364650 [TBL] [Abstract][Full Text] [Related]
3. Single Molecule Study of Hydrogen Bond Interactions Between Single Oligonucleotide and Aerolysin Sensing Interface. Li MY; Wang YQ; Lu Y; Ying YL; Long YT Front Chem; 2019; 7():528. PubMed ID: 31417894 [TBL] [Abstract][Full Text] [Related]
4. Identification of Essential Sensitive Regions of the Aerolysin Nanopore for Single Oligonucleotide Analysis. Wang YQ; Li MY; Qiu H; Cao C; Wang MB; Wu XY; Huang J; Ying YL; Long YT Anal Chem; 2018 Jul; 90(13):7790-7794. PubMed ID: 29882404 [TBL] [Abstract][Full Text] [Related]
5. A General Strategy of Aerolysin Nanopore Detection for Oligonucleotides with the Secondary Structure. Liao DF; Cao C; Ying YL; Long YT Small; 2018 May; 14(18):e1704520. PubMed ID: 29603609 [TBL] [Abstract][Full Text] [Related]
6. The analysis of single cysteine molecules with an aerolysin nanopore. Yuan B; Li S; Ying YL; Long YT Analyst; 2020 Feb; 145(4):1179-1183. PubMed ID: 31898708 [TBL] [Abstract][Full Text] [Related]
7. Rationally Designed Sensing Selectivity and Sensitivity of an Aerolysin Nanopore via Site-Directed Mutagenesis. Wang YQ; Cao C; Ying YL; Li S; Wang MB; Huang J; Long YT ACS Sens; 2018 Apr; 3(4):779-783. PubMed ID: 29619834 [TBL] [Abstract][Full Text] [Related]
8. Measuring a frequency spectrum for single-molecule interactions with a confined nanopore. Liu SC; Li MX; Li MY; Wang YQ; Ying YL; Wan YJ; Long YT Faraday Discuss; 2018 Oct; 210(0):87-99. PubMed ID: 29985499 [TBL] [Abstract][Full Text] [Related]
9. Full Width at Half Maximum of Nanopore Current Blockage Controlled by a Single-Biomolecule Interface. Li JG; Li MY; Li XY; Wu XY; Ying YL; Long YT Langmuir; 2022 Jan; 38(3):1188-1193. PubMed ID: 35019652 [TBL] [Abstract][Full Text] [Related]
10. Mapping the sensing spots of aerolysin for single oligonucleotides analysis. Cao C; Li MY; Cirauqui N; Wang YQ; Dal Peraro M; Tian H; Long YT Nat Commun; 2018 Jul; 9(1):2823. PubMed ID: 30026547 [TBL] [Abstract][Full Text] [Related]
11. Single-Molecule Study of Peptides with the Same Amino Acid Composition but Different Sequences by Using an Aerolysin Nanopore. Hu F; Angelov B; Li S; Li N; Lin X; Zou A Chembiochem; 2020 Sep; 21(17):2467-2473. PubMed ID: 32274877 [TBL] [Abstract][Full Text] [Related]
12. Probing driving forces in aerolysin and α-hemolysin biological nanopores: electrophoresis versus electroosmosis. Boukhet M; Piguet F; Ouldali H; Pastoriza-Gallego M; Pelta J; Oukhaled A Nanoscale; 2016 Nov; 8(43):18352-18359. PubMed ID: 27762420 [TBL] [Abstract][Full Text] [Related]
13. Construction of an aerolysin nanopore in a lipid bilayer for single-oligonucleotide analysis. Cao C; Liao DF; Yu J; Tian H; Long YT Nat Protoc; 2017 Sep; 12(9):1901-1911. PubMed ID: 28837133 [TBL] [Abstract][Full Text] [Related]
14. Nanoscale Probing of Informational Polymers with Nanopores. Applications to Amyloidogenic Fragments, Peptides, and DNA-PNA Hybrids. Luchian T; Park Y; Asandei A; Schiopu I; Mereuta L; Apetrei A Acc Chem Res; 2019 Jan; 52(1):267-276. PubMed ID: 30605305 [TBL] [Abstract][Full Text] [Related]
15. Electroosmotic Trap Against the Electrophoretic Force Near a Protein Nanopore Reveals Peptide Dynamics During Capture and Translocation. Asandei A; Schiopu I; Chinappi M; Seo CH; Park Y; Luchian T ACS Appl Mater Interfaces; 2016 May; 8(20):13166-79. PubMed ID: 27159806 [TBL] [Abstract][Full Text] [Related]
16. Revisiting the Origin of Nanopore Current Blockage for Volume Difference Sensing at the Atomic Level. Li MY; Ying YL; Yu J; Liu SC; Wang YQ; Li S; Long YT JACS Au; 2021 Jul; 1(7):967-976. PubMed ID: 34467343 [TBL] [Abstract][Full Text] [Related]
17. Electrophoretic motion of a nanorod along the axis of a nanopore under a salt gradient. Joo SW; Qian S J Colloid Interface Sci; 2011 Apr; 356(1):331-40. PubMed ID: 21277582 [TBL] [Abstract][Full Text] [Related]
18. Engineering and Modeling the Electrophoretic Trapping of a Single Protein Inside a Nanopore. Willems K; Ruić D; Biesemans A; Galenkamp NS; Van Dorpe P; Maglia G ACS Nano; 2019 Sep; 13(9):9980-9992. PubMed ID: 31403770 [TBL] [Abstract][Full Text] [Related]
19. Learning Shapelets for Improving Single-Molecule Nanopore Sensing. Wei ZX; Ying YL; Li MY; Yang J; Zhou JL; Wang HF; Yan BY; Long YT Anal Chem; 2019 Aug; 91(15):10033-10039. PubMed ID: 31083925 [TBL] [Abstract][Full Text] [Related]