These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 34213341)

  • 1. Brownian Particle Thermal Drift Caused by Hydrodynamic Fluctuations.
    Morozov KI; Köhler W
    J Phys Chem B; 2021 Jul; 125(27):7462-7469. PubMed ID: 34213341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonisothermal Brownian motion: Thermophoresis as the macroscopic manifestation of thermally biased molecular motion.
    Brenner H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 1):061201. PubMed ID: 16485937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brownian dynamics without Green's functions.
    Delong S; Usabiaga FB; Delgado-Buscalioni R; Griffith BE; Donev A
    J Chem Phys; 2014 Apr; 140(13):134110. PubMed ID: 24712783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effective temperature for the thermal fluctuations in hot Brownian motion.
    Srivastava M; Chakraborty D
    J Chem Phys; 2018 May; 148(20):204902. PubMed ID: 29865851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonisothermal fluctuating hydrodynamics and Brownian motion.
    Falasco G; Kroy K
    Phys Rev E; 2016 Mar; 93(3):032150. PubMed ID: 27078335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resonances arising from hydrodynamic memory in Brownian motion.
    Franosch T; Grimm M; Belushkin M; Mor FM; Foffi G; Forró L; Jeney S
    Nature; 2011 Oct; 478(7367):85-8. PubMed ID: 21979048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution detection of Brownian motion for quantitative optical tweezers experiments.
    Grimm M; Franosch T; Jeney S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021912. PubMed ID: 23005790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anisotropic active Brownian particle with a fluctuating propulsion force.
    Thiffeault JL; Guo J
    Phys Rev E; 2022 Jul; 106(1):L012603. PubMed ID: 35974529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal fluctuations of hydrodynamic flows in nanochannels.
    Detcheverry F; Bocquet L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012106. PubMed ID: 23944413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluctuating Hydrodynamics Approach for the Simulation of Nanoparticle Brownian Motion in a Newtonian Fluid.
    Uma B; Ayyaswamy PS; Radhakrishnan R; Eckmann DM
    Int J Micronano Scale Transp; 2012 Jun; 3(1-2):13-20. PubMed ID: 23950764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoparticle Brownian motion and hydrodynamic interactions in the presence of flow fields.
    Uma B; Swaminathan TN; Radhakrishnan R; Eckmann DM; Ayyaswamy PS
    Phys Fluids (1994); 2011 Jul; 23(7):73602-7360215. PubMed ID: 21918592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Significance of thermal fluctuations and hydrodynamic interactions in receptor-ligand-mediated adhesive dynamics of a spherical particle in wall-bound shear flow.
    Ramesh KV; Thaokar R; Prakash JR; Prabhakar R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022302. PubMed ID: 25768500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A generalised Landau-Lifshitz fluctuating hydrodynamics model for concurrent simulations of liquids at atomistic and continuum resolution.
    Korotkin IA; Karabasov SA
    J Chem Phys; 2018 Dec; 149(24):244101. PubMed ID: 30599699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluctuating hydrodynamics for dilute granular gases.
    Brey JJ; Maynar P; García de Soria MI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 1):051305. PubMed ID: 19518447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Smoothed particle hydrodynamics model for Landau-Lifshitz-Navier-Stokes and advection-diffusion equations.
    Kordilla J; Pan W; Tartakovsky A
    J Chem Phys; 2014 Dec; 141(22):224112. PubMed ID: 25494737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulating Brownian suspensions with fluctuating hydrodynamics.
    Delmotte B; Keaveny EE
    J Chem Phys; 2015 Dec; 143(24):244109. PubMed ID: 26723653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermophoretic Motion of a Sphere Parallel to an Insulated Plane.
    Chen SH
    J Colloid Interface Sci; 2000 Apr; 224(1):63-75. PubMed ID: 10708494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Driven particle in a two-dimensional periodic substrate: Nonmonotonic dependence of drift velocity on temperature.
    M P A; Joseph T
    Phys Rev E; 2023 Mar; 107(3-1):034116. PubMed ID: 37073011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamic correlations in multiparticle collision dynamics fluids.
    Huang CC; Gompper G; Winkler RG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056711. PubMed ID: 23214910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective temperatures of hot Brownian motion.
    Falasco G; Gnann MV; Rings D; Kroy K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032131. PubMed ID: 25314419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.