These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 34213529)

  • 1. phyLoSTM: a novel deep learning model on disease prediction from longitudinal microbiome data.
    Sharma D; Xu W
    Bioinformatics; 2021 Nov; 37(21):3707-3714. PubMed ID: 34213529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TaxoNN: ensemble of neural networks on stratified microbiome data for disease prediction.
    Sharma D; Paterson AD; Xu W
    Bioinformatics; 2020 Nov; 36(17):4544-4550. PubMed ID: 32449747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ReGeNNe: genetic pathway-based deep neural network using canonical correlation regularizer for disease prediction.
    Sharma D; Xu W
    Bioinformatics; 2023 Nov; 39(11):. PubMed ID: 37963055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A self-knowledge distillation-driven CNN-LSTM model for predicting disease outcomes using longitudinal microbiome data.
    Fung DLX; Li X; Leung CK; Hu P
    Bioinform Adv; 2023; 3(1):vbad059. PubMed ID: 37228387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel deep learning method for predictive modeling of microbiome data.
    Wang Y; Bhattacharya T; Jiang Y; Qin X; Wang Y; Liu Y; Saykin AJ; Chen L
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32406914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilizing longitudinal microbiome taxonomic profiles to predict food allergy via Long Short-Term Memory networks.
    Metwally AA; Yu PS; Reiman D; Dai Y; Finn PW; Perkins DL
    PLoS Comput Biol; 2019 Feb; 15(2):e1006693. PubMed ID: 30716085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DeepMicroGen: a generative adversarial network-based method for longitudinal microbiome data imputation.
    Choi JM; Ji M; Watson LT; Zhang L
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 37099704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human host status inference from temporal microbiome changes via recurrent neural networks.
    Chen X; Liu L; Zhang W; Yang J; Wong KC
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34151933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. phylaGAN: data augmentation through conditional GANs and autoencoders for improving disease prediction accuracy using microbiome data.
    Sharma D; Lou W; Xu W
    Bioinformatics; 2024 Mar; 40(4):. PubMed ID: 38569898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Virtifier: a deep learning-based identifier for viral sequences from metagenomes.
    Miao Y; Liu F; Hou T; Liu Y
    Bioinformatics; 2022 Feb; 38(5):1216-1222. PubMed ID: 34908121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromatin accessibility prediction via convolutional long short-term memory networks with k-mer embedding.
    Min X; Zeng W; Chen N; Chen T; Jiang R
    Bioinformatics; 2017 Jul; 33(14):i92-i101. PubMed ID: 28881969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LSTM Model for Prediction of Heart Failure in Big Data.
    Maragatham G; Devi S
    J Med Syst; 2019 Mar; 43(5):111. PubMed ID: 30888519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting microbiomes through a deep latent space.
    García-Jiménez B; Muñoz J; Cabello S; Medina J; Wilkinson MD
    Bioinformatics; 2021 Jun; 37(10):1444-1451. PubMed ID: 33289510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust biomarker discovery for microbiome-wide association studies.
    Zhu Q; Li B; He T; Li G; Jiang X
    Methods; 2020 Feb; 173():44-51. PubMed ID: 31238097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning for the dynamic prediction of multivariate longitudinal and survival data.
    Lin J; Luo S
    Stat Med; 2022 Jul; 41(15):2894-2907. PubMed ID: 35347750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pldist: ecological dissimilarities for paired and longitudinal microbiome association analysis.
    Plantinga AM; Chen J; Jenq RR; Wu MC
    Bioinformatics; 2019 Oct; 35(19):3567-3575. PubMed ID: 30863868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbiome Toolbox: methodological approaches to derive and visualize microbiome trajectories.
    Banjac J; Sprenger N; Dogra SK
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36469345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transfer learning for biomedical named entity recognition with neural networks.
    Giorgi JM; Bader GD
    Bioinformatics; 2018 Dec; 34(23):4087-4094. PubMed ID: 29868832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep-learning method for data association in particle tracking.
    Yao Y; Smal I; Grigoriev I; Akhmanova A; Meijering E
    Bioinformatics; 2020 Dec; 36(19):4935-4941. PubMed ID: 32879934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.