These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 34213536)

  • 1. Non-parametric modelling of temporal and spatial counts data from RNA-seq experiments.
    BinTayyash N; Georgaka S; John ST; Ahmed S; Boukouvalas A; Hensman J; Rattray M
    Bioinformatics; 2021 Nov; 37(21):3788-3795. PubMed ID: 34213536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bayesian modeling of spatial molecular profiling data via Gaussian process.
    Li Q; Zhang M; Xie Y; Xiao G
    Bioinformatics; 2021 Nov; 37(22):4129-4136. PubMed ID: 34146105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. bayNorm: Bayesian gene expression recovery, imputation and normalization for single-cell RNA-sequencing data.
    Tang W; Bertaux F; Thomas P; Stefanelli C; Saint M; Marguerat S; Shahrezaei V
    Bioinformatics; 2020 Feb; 36(4):1174-1181. PubMed ID: 31584606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchical probabilistic models for multiple gene/variant associations based on next-generation sequencing data.
    Vavoulis DV; Taylor JC; Schuh A
    Bioinformatics; 2017 Oct; 33(19):3058-3064. PubMed ID: 28575251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interpretable factor models of single-cell RNA-seq via variational autoencoders.
    Svensson V; Gayoso A; Yosef N; Pachter L
    Bioinformatics; 2020 Jun; 36(11):3418-3421. PubMed ID: 32176273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NBLDA: negative binomial linear discriminant analysis for RNA-Seq data.
    Dong K; Zhao H; Tong T; Wan X
    BMC Bioinformatics; 2016 Sep; 17(1):369. PubMed ID: 27623864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SimSeq: a nonparametric approach to simulation of RNA-sequence datasets.
    Benidt S; Nettleton D
    Bioinformatics; 2015 Jul; 31(13):2131-40. PubMed ID: 25725090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GrandPrix: scaling up the Bayesian GPLVM for single-cell data.
    Ahmed S; Rattray M; Boukouvalas A
    Bioinformatics; 2019 Jan; 35(1):47-54. PubMed ID: 30561544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A flexible count data model to fit the wide diversity of expression profiles arising from extensively replicated RNA-seq experiments.
    Esnaola M; Puig P; Gonzalez D; Castelo R; Gonzalez JR
    BMC Bioinformatics; 2013 Aug; 14():254. PubMed ID: 23965047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast and accurate approximate inference of transcript expression from RNA-seq data.
    Hensman J; Papastamoulis P; Glaus P; Honkela A; Rattray M
    Bioinformatics; 2015 Dec; 31(24):3881-9. PubMed ID: 26315907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inferring the perturbation time from biological time course data.
    Yang J; Penfold CA; Grant MR; Rattray M
    Bioinformatics; 2016 Oct; 32(19):2956-64. PubMed ID: 27288495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SwarnSeq: An improved statistical approach for differential expression analysis of single-cell RNA-seq data.
    Das S; Rai SN
    Genomics; 2021 May; 113(3):1308-1324. PubMed ID: 33662531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ZIAQ: a quantile regression method for differential expression analysis of single-cell RNA-seq data.
    Zhang W; Wei Y; Zhang D; Xu EY
    Bioinformatics; 2020 May; 36(10):3124-3130. PubMed ID: 32053182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bayesian gamma-negative binomial modeling of single-cell RNA sequencing data.
    Dadaneh SZ; de Figueiredo P; Sze SH; Zhou M; Qian X
    BMC Genomics; 2020 Sep; 21(Suppl 9):585. PubMed ID: 32900358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling capture efficiency of single-cell RNA-sequencing data improves inference of transcriptome-wide burst kinetics.
    Tang W; Jørgensen ACS; Marguerat S; Thomas P; Shahrezaei V
    Bioinformatics; 2023 Jul; 39(7):. PubMed ID: 37354494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vaeda computationally annotates doublets in single-cell RNA sequencing data.
    Schriever H; Kostka D
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36342203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graph attention network for link prediction of gene regulations from single-cell RNA-sequencing data.
    Chen G; Liu ZP
    Bioinformatics; 2022 Sep; 38(19):4522-4529. PubMed ID: 35961023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Covariate-dependent negative binomial factor analysis of RNA sequencing data.
    Zamani Dadaneh S; Zhou M; Qian X
    Bioinformatics; 2018 Jul; 34(13):i61-i69. PubMed ID: 29949981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments.
    Leng N; Dawson JA; Thomson JA; Ruotti V; Rissman AI; Smits BM; Haag JD; Gould MN; Stewart RM; Kendziorski C
    Bioinformatics; 2013 Apr; 29(8):1035-43. PubMed ID: 23428641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A machine learning-based method for automatically identifying novel cells in annotating single-cell RNA-seq data.
    Li Z; Wang Y; Ganan-Gomez I; Colla S; Do KA
    Bioinformatics; 2022 Oct; 38(21):4885-4892. PubMed ID: 36083008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.