These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34213628)

  • 1. Reduced Models of Cardiomyocytes Excitability: Comparing Karma and FitzHugh-Nagumo.
    Gonzalez Herrero ME; Kuehn C; Tsaneva-Atanasova K
    Bull Math Biol; 2021 Jul; 83(8):88. PubMed ID: 34213628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymptotic properties of mathematical models of excitability.
    Biktasheva IV; Simitev RD; Suckley R; Biktashev VN
    Philos Trans A Math Phys Eng Sci; 2006 May; 364(1842):1283-98. PubMed ID: 16608708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibitor-Induced Wavetrains and Spiral Waves in an Extended FitzHugh-Nagumo Model of Nerve Cell Dynamics.
    Gani MO; Kabir MH; Ogawa T
    Bull Math Biol; 2022 Nov; 84(12):145. PubMed ID: 36350426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. "Traveling wave" solutions of FitzHugh model with cross-diffusion.
    Berezovskaya F; Camacho E; Wirkus S; Karev G
    Math Biosci Eng; 2008 Apr; 5(2):239-60. PubMed ID: 18613732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymptotics of conduction velocity restitution in models of electrical excitation in the heart.
    Simitev RD; Biktashev VN
    Bull Math Biol; 2011 Jan; 73(1):72-115. PubMed ID: 20204709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-Trivial Dynamics in the FizHugh-Rinzel Model and Non-Homogeneous Oscillatory-Excitable Reaction-Diffusions Systems.
    Ambrosio B; Aziz-Alaoui MA; Mondal A; Mondal A; Sharma SK; Upadhyay RK
    Biology (Basel); 2023 Jun; 12(7):. PubMed ID: 37508349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On propagation of excitation waves in moving media: the FitzHugh-Nagumo model.
    Ermakova EA; Shnol EE; Panteleev MA; Butylin AA; Volpert V; Ataullakhanov FI
    PLoS One; 2009; 4(2):e4454. PubMed ID: 19212435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noise-induced excitation wave and its size distribution in coupled FitzHugh-Nagumo equations on a square lattice.
    Sakaguchi H
    Phys Rev E; 2024 Apr; 109(4-1):044211. PubMed ID: 38755797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On interplay between excitability and geometry.
    Adamatzky A
    Biosystems; 2020 Jan; 187():104034. PubMed ID: 31756587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short-time-delay limit of the self-coupled FitzHugh-Nagumo system.
    Erneux T; Weicker L; Bauer L; Hövel P
    Phys Rev E; 2016 Feb; 93(2):022208. PubMed ID: 26986332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rotating wave solutions of the FitzHugh-Nagumo equations.
    Alford JG; Auchmuty G
    J Math Biol; 2006 Nov; 53(5):797-819. PubMed ID: 16906432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clarification and Complement to "Mean-Field Description and Propagation of Chaos in Networks of Hodgkin-Huxley and FitzHugh-Nagumo Neurons".
    Bossy M; Faugeras O; Talay D
    J Math Neurosci; 2015 Dec; 5(1):31. PubMed ID: 26329321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Negative tension of scroll wave filaments and turbulence in three-dimensional excitable media and application in cardiac dynamics.
    Alonso S; Bär M; Panfilov AV
    Bull Math Biol; 2013 Aug; 75(8):1351-76. PubMed ID: 22829178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mean-field description and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons.
    Baladron J; Fasoli D; Faugeras O; Touboul J
    J Math Neurosci; 2012 May; 2(1):10. PubMed ID: 22657695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Viscoelastic Fitzhugh-Nagumo models.
    Bini D; Cherubini C; Filippi S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 1):041929. PubMed ID: 16383442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Initiation and stability of reentry in two coupled excitable fibers.
    Palmer A; Brindley J; Holden AV
    Bull Math Biol; 1992 Nov; 54(6):1039-56. PubMed ID: 1515869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parameters analysis of FitzHugh-Nagumo model for a reliable simulation.
    Xu B; Binczak S; Jacquir S; Pont O; Yahia H
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4334-7. PubMed ID: 25570951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppression and frequency control of repetitive spiking in the FitzHugh-Nagumo model.
    Sakaguchi H; Yamasaki K
    Phys Rev E; 2023 Jul; 108(1-1):014207. PubMed ID: 37583215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical analysis of subcritical Hopf bifurcations in the two-dimensional FitzHugh-Nagumo model.
    Sehgal S; Foulkes AJ
    Phys Rev E; 2020 Jul; 102(1-1):012212. PubMed ID: 32795073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correspondence between discrete and continuous models of excitable media: trigger waves.
    Chernyak YB; Feldman AB; Cohen RJ
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1997 Mar; 55(3 Pt B):3215-33. PubMed ID: 11540551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.