These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 34213897)

  • 1. Atomically Conformal Metal Laminations on Plasmonic Nanocrystals for Efficient Catalysis.
    Acharya A; Dubbu S; Kumar S; Kumari N; Kim Y; So S; Kwon T; Wang Z; Park J; Cho YK; Rho J; Oh SH; Kumar A; Lee IS
    J Am Chem Soc; 2021 Jul; 143(28):10582-10589. PubMed ID: 34213897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface Depletion Layers in Plasmonic Metal Oxide Nanocrystals.
    Gibbs SL; Staller CM; Milliron DJ
    Acc Chem Res; 2019 Sep; 52(9):2516-2524. PubMed ID: 31424914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Template Synthesis of Noble Metal Nanocrystals with Unusual Crystal Structures and Their Catalytic Applications.
    Fan Z; Zhang H
    Acc Chem Res; 2016 Dec; 49(12):2841-2850. PubMed ID: 27993013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient Plasmon-Mediated Energy Funneling to the Surface of Au@Pt Core-Shell Nanocrystals.
    Engelbrekt C; Crampton KT; Fishman DA; Law M; Apkarian VA
    ACS Nano; 2020 Apr; 14(4):5061-5074. PubMed ID: 32167744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size-confined growth of atom-precise nanoclusters in metal-organic frameworks and their catalytic applications.
    Liu L; Song Y; Chong H; Yang S; Xiang J; Jin S; Kang X; Zhang J; Yu H; Zhu M
    Nanoscale; 2016 Jan; 8(3):1407-12. PubMed ID: 26669234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical Interface Damping in Nonstoichiometric Semiconductor Plasmonic Nanocrystals: An Effect of the Surrounding Environment.
    Ghorai N; Ghosh HN
    Langmuir; 2022 May; 38(18):5339-5350. PubMed ID: 35491746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmon-driven synthesis of individual metal@semiconductor core@shell nanoparticles.
    Kamarudheen R; Kumari G; Baldi A
    Nat Commun; 2020 Aug; 11(1):3957. PubMed ID: 32770052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-Induced Voltages in Catalysis by Plasmonic Nanostructures.
    Wilson AJ; Jain PK
    Acc Chem Res; 2020 Sep; 53(9):1773-1781. PubMed ID: 32786334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface Atomic Regulation of Core-Shell Noble Metal Catalysts.
    Ge J; Li Z; Hong X; Li Y
    Chemistry; 2019 Apr; 25(20):5113-5127. PubMed ID: 30484919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colloidal-ALD-Grown Metal Oxide Shells Enable the Synthesis of Photoactive Ligand/Nanocrystal Composite Materials.
    Green PB; Lecina OS; Albertini PP; Loiudice A; Buonsanti R
    J Am Chem Soc; 2023 Apr; 145(14):8189-8197. PubMed ID: 36996442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anisotropic Plasmonic CuS Nanocrystals as a Natural Electronic Material with Hyperbolic Optical Dispersion.
    Córdova-Castro RM; Casavola M; van Schilfgaarde M; Krasavin AV; Green MA; Richards D; Zayats AV
    ACS Nano; 2019 Jun; 13(6):6550-6560. PubMed ID: 31117375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shape-Controlled Synthesis of Colloidal Metal Nanocrystals by Replicating the Surface Atomic Structure on the Seed.
    Gilroy KD; Yang X; Xie S; Zhao M; Qin D; Xia Y
    Adv Mater; 2018 Jun; 30(25):e1706312. PubMed ID: 29656471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noble-Metal Nanocrystals with Controlled Facets for Electrocatalysis.
    Hong JW; Kim Y; Kwon Y; Han SW
    Chem Asian J; 2016 Aug; 11(16):2224-39. PubMed ID: 27258679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling energy flow in multimetallic nanostructures for plasmonic catalysis.
    Aslam U; Chavez S; Linic S
    Nat Nanotechnol; 2017 Oct; 12(10):1000-1005. PubMed ID: 28737751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Virus-Sized Gold Nanorods: Plasmonic Particles for Biology.
    Murphy CJ; Chang HH; Falagan-Lotsch P; Gole MT; Hofmann DM; Hoang KNL; McClain SM; Meyer SM; Turner JG; Unnikrishnan M; Wu M; Zhang X; Zhang Y
    Acc Chem Res; 2019 Aug; 52(8):2124-2135. PubMed ID: 31373796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of Nanocomposite Plasmonic Films Made from Cellulose Nanocrystals or Mesoporous Silica Decorated with Unidirectionally Aligned Gold Nanorods.
    Campbell MG; Liu Q; Sanders A; Evans JS; Smalyukh II
    Materials (Basel); 2014 Apr; 7(4):3021-3033. PubMed ID: 28788604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative study on the localized surface plasmon resonance of boron- and phosphorus-doped silicon nanocrystals.
    Zhou S; Pi X; Ni Z; Ding Y; Jiang Y; Jin C; Delerue C; Yang D; Nozaki T
    ACS Nano; 2015 Jan; 9(1):378-86. PubMed ID: 25551330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seeded growth of metal-doped plasmonic oxide heterodimer nanocrystals and their chemical transformation.
    Ye X; Reifsnyder Hickey D; Fei J; Diroll BT; Paik T; Chen J; Murray CB
    J Am Chem Soc; 2014 Apr; 136(13):5106-15. PubMed ID: 24628516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal hybrid nanoparticles for catalytic organic and photochemical transformations.
    Song H
    Acc Chem Res; 2015 Mar; 48(3):491-9. PubMed ID: 25730414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface Ligands as Permeation Barrier in the Growth and Assembly of Anisotropic Semiconductor Nanocrystals.
    Kim D; Lee DC
    J Phys Chem Lett; 2020 Apr; 11(7):2647-2657. PubMed ID: 32175742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.