These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 34214042)

  • 1. A Multi-Variate Approach to Predicting Myoelectric Control Usability.
    Nawfel JL; Englehart KB; Scheme EJ
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1312-1327. PubMed ID: 34214042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship Between Offline and Online Metrics in Myoelectric Pattern Recognition Control Based on Target Achievement Control Test.
    Lv B; Sheng X; Hao D; Zhu X
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6595-6598. PubMed ID: 31947353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Offline accuracy: A potentially misleading metric in myoelectric pattern recognition for prosthetic control.
    Ortiz-Catalan M; Rouhani F; Branemark R; Hakansson B
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1140-3. PubMed ID: 26736467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-Time and Offline Evaluation of Myoelectric Pattern Recognition for the Decoding of Hand Movements.
    Abbaspour S; Naber A; Ortiz-Catalan M; GholamHosseini H; Lindén M
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34451119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the Relationship Between EMG Feature Space Characteristics and Control Performance in Machine Learning Myoelectric Control.
    Franzke AW; Kristoffersen MB; Jayaram V; van der Sluis CK; Murgia A; Bongers RM
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():21-30. PubMed ID: 33035157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FMG Versus EMG: A Comparison of Usability for Real-Time Pattern Recognition Based Control.
    Belyea A; Englehart K; Scheme E
    IEEE Trans Biomed Eng; 2019 Nov; 66(11):3098-3104. PubMed ID: 30794502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Muscle Synergies in Real-Time Classification of Upper Limb Motions using Extreme Learning Machines.
    Antuvan CW; Bisio F; Marini F; Yen SC; Cambria E; Masia L
    J Neuroeng Rehabil; 2016 Aug; 13(1):76. PubMed ID: 27527511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust Pattern Recognition Myoelectric Training for Improved Online Control within a 3D Virtual Environment.
    Woodward RB; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4701-4704. PubMed ID: 30441399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Affordable Embroidered EMG Electrodes for Myoelectric Control of Prostheses: A Pilot Study.
    Kamavuako EN; Brown M; Bao X; Chihi I; Pitou S; Howard M
    Sensors (Basel); 2021 Aug; 21(15):. PubMed ID: 34372482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the usability of intramuscular EMG for prosthetic control: a Fitts' Law approach.
    Kamavuako EN; Scheme EJ; Englehart KB
    J Electromyogr Kinesiol; 2014 Oct; 24(5):770-7. PubMed ID: 25048642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Offline Evaluation Matters: Investigation of the Influence of Offline Performance on Real-time Operation of Electromyography-based Neural-Machine Interfaces.
    Hinson RM; Berman J; Filer W; Kamper D; Hu X; Huang H
    IEEE Trans Neural Syst Rehabil Eng; 2022 Dec; PP():. PubMed ID: 37015358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A real-time pattern recognition based myoelectric control usability study implemented in a virtual environment.
    Hargrove L; Losier Y; Lock B; Englehart K; Hudgins B
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4842-5. PubMed ID: 18003090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating User and Machine Learning in Short- and Long-Term Pattern Recognition-Based Myoelectric Control.
    Lv B; Chai G; Sheng X; Ding H; Zhu X
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():777-785. PubMed ID: 33861704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myoelectric Pattern Recognition for Controlling a Robotic Hand: A Feasibility Study in Stroke.
    Lu Z; Tong KY; Zhang X; Li S; Zhou P
    IEEE Trans Biomed Eng; 2019 Feb; 66(2):365-372. PubMed ID: 29993410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving the Robustness of Myoelectric Pattern Recognition for Upper Limb Prostheses by Covariate Shift Adaptation.
    Vidovic MM; Hwang HJ; Amsuss S; Hahne JM; Farina D; Muller KR
    IEEE Trans Neural Syst Rehabil Eng; 2016 Sep; 24(9):961-970. PubMed ID: 26513794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Influence of Training With Visual Biofeedback on the Predictability of Myoelectric Control Usability.
    Nawfel JL; Englehart KB; Scheme EJ
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():878-892. PubMed ID: 35333717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classification complexity in myoelectric pattern recognition.
    Nilsson N; Håkansson B; Ortiz-Catalan M
    J Neuroeng Rehabil; 2017 Jul; 14(1):68. PubMed ID: 28693533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time robustness evaluation of regression based myoelectric control against arm position change and donning/doffing.
    Hwang HJ; Hahne JM; Müller KR
    PLoS One; 2017; 12(11):e0186318. PubMed ID: 29095846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning regularized representations of categorically labelled surface EMG enables simultaneous and proportional myoelectric control.
    Olsson AE; Malešević N; Björkman A; Antfolk C
    J Neuroeng Rehabil; 2021 Feb; 18(1):35. PubMed ID: 33588868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Offline and online myoelectric pattern recognition analysis and real-time control of a robotic hand after spinal cord injury.
    Lu Z; Stampas A; Francisco GE; Zhou P
    J Neural Eng; 2019 Jun; 16(3):036018. PubMed ID: 30836346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.