These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 34214077)
1. A benchmark dataset for canopy crown detection and delineation in co-registered airborne RGB, LiDAR and hyperspectral imagery from the National Ecological Observation Network. Weinstein BG; Graves SJ; Marconi S; Singh A; Zare A; Stewart D; Bohlman SA; White EP PLoS Comput Biol; 2021 Jul; 17(7):e1009180. PubMed ID: 34214077 [TBL] [Abstract][Full Text] [Related]
2. A remote sensing derived data set of 100 million individual tree crowns for the National Ecological Observatory Network. Weinstein BG; Marconi S; Bohlman SA; Zare A; Singh A; Graves SJ; White EP Elife; 2021 Feb; 10():. PubMed ID: 33605211 [TBL] [Abstract][Full Text] [Related]
3. Leaf traits and canopy structure together explain canopy functional diversity: an airborne remote sensing approach. Kamoske AG; Dahlin KM; Serbin SP; Stark SC Ecol Appl; 2021 Mar; 31(2):e02230. PubMed ID: 33015908 [TBL] [Abstract][Full Text] [Related]
4. Estimating individual-level plant traits at scale. Marconi S; Graves SJ; Weinstein BG; Bohlman S; White EP Ecol Appl; 2021 Jun; 31(4):e02300. PubMed ID: 33480058 [TBL] [Abstract][Full Text] [Related]
5. Individual canopy tree species maps for the National Ecological Observatory Network. Weinstein BG; Marconi S; Zare A; Bohlman SA; Singh A; Graves SJ; Magee L; Johnson DJ; Record S; Rubio VE; Swenson NG; Townsend P; Veblen TT; Andrus RA; White EP PLoS Biol; 2024 Jul; 22(7):e3002700. PubMed ID: 39013163 [TBL] [Abstract][Full Text] [Related]
6. Mapping multi-scale vascular plant richness in a forest landscape with integrated LiDAR and hyperspectral remote-sensing. Hakkenberg CR; Zhu K; Peet RK; Song C Ecology; 2018 Feb; 99(2):474-487. PubMed ID: 29231965 [TBL] [Abstract][Full Text] [Related]
7. Individual tree crown delineation and tree species classification with hyperspectral and LiDAR data. Dalponte M; Frizzera L; Gianelle D PeerJ; 2019; 6():e6227. PubMed ID: 30648002 [TBL] [Abstract][Full Text] [Related]
8. Modeling plant composition as community continua in a forest landscape with LiDAR and hyperspectral remote sensing. Hakkenberg CR; Peet RK; Urban DL; Song C Ecol Appl; 2018 Jan; 28(1):177-190. PubMed ID: 29024180 [TBL] [Abstract][Full Text] [Related]
9. A Comparison of Three Airborne Laser Scanner Types for Species Identification of Individual Trees. Prieur JF; St-Onge B; Fournier RA; Woods ME; Rana P; Kneeshaw D Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009577 [TBL] [Abstract][Full Text] [Related]
10. Integrating high resolution drone imagery and forest inventory to distinguish canopy and understory trees and quantify their contributions to forest structure and dynamics. Araujo RF; Chambers JQ; Celes CHS; Muller-Landau HC; Santos APFD; Emmert F; Ribeiro GHPM; Gimenez BO; Lima AJN; Campos MAA; Higuchi N PLoS One; 2020; 15(12):e0243079. PubMed ID: 33301487 [TBL] [Abstract][Full Text] [Related]
11. Comparative assessment of methods for estimating tree canopy cover across a rural-to-urban gradient in the mid-Atlantic region of the USA. Riemann R; Liknes G; O'Neil-Dunne J; Toney C; Lister T Environ Monit Assess; 2016 May; 188(5):297. PubMed ID: 27090528 [TBL] [Abstract][Full Text] [Related]
12. A critique of general allometry-inspired models for estimating forest carbon density from airborne LiDAR. Spriggs RA; Vanderwel MC; Jones TA; Caspersen JP; Coomes DA PLoS One; 2019; 14(4):e0215238. PubMed ID: 31002682 [TBL] [Abstract][Full Text] [Related]
13. Harvesting tree biomass at the stand level to assess the accuracy of field and airborne biomass estimation in savannas. Colgan MS; Asner GP; Swemmer T Ecol Appl; 2013 Jul; 23(5):1170-84. PubMed ID: 23967584 [TBL] [Abstract][Full Text] [Related]
14. Operational Tree Species Mapping in a Diverse Tropical Forest with Airborne Imaging Spectroscopy. Baldeck CA; Asner GP; Martin RE; Anderson CB; Knapp DE; Kellner JR; Wright SJ PLoS One; 2015; 10(7):e0118403. PubMed ID: 26153693 [TBL] [Abstract][Full Text] [Related]
15. In-situ and airborne hyperspectral data for detecting agricultural activities in a dense forest landscape. Rajesh CB; Kumar CVSSM; Jha SS; Ramachandran KI; Nidamanuri RR Data Brief; 2023 Oct; 50():109510. PubMed ID: 37663764 [TBL] [Abstract][Full Text] [Related]
16. Fusion of Hyperspectral CASI and Airborne LiDAR Data for Ground Object Classification through Residual Network. Chang Z; Yu H; Zhang Y; Wang K Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708693 [TBL] [Abstract][Full Text] [Related]
17. Explainable identification and mapping of trees using UAV RGB image and deep learning. Onishi M; Ise T Sci Rep; 2021 Jan; 11(1):903. PubMed ID: 33441689 [TBL] [Abstract][Full Text] [Related]
18. Remote sensing tree classification with a multilayer perceptron. Sumsion GR; Bradshaw MS; Hill KT; Pinto LDG; Piccolo SR PeerJ; 2019; 7():e6101. PubMed ID: 30842894 [TBL] [Abstract][Full Text] [Related]
19. Mapping and characterizing selected canopy tree species at the Angkor World Heritage site in Cambodia using aerial data. Singh M; Evans D; Tan BS; Nin CS PLoS One; 2015; 10(4):e0121558. PubMed ID: 25902148 [TBL] [Abstract][Full Text] [Related]
20. Predicting spatial variations of tree species richness in tropical forests from high-resolution remote sensing. Fricker GA; Wolf JA; Saatchi SS; Gillespie TW Ecol Appl; 2015 Oct; 25(7):1776-89. PubMed ID: 26591445 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]