These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Effect of Aspergillus oryzae-challenged germination on soybean isoflavone content and antioxidant activity. Jeon HY; Seo DB; Shin HJ; Lee SJ J Agric Food Chem; 2012 Mar; 60(11):2807-14. PubMed ID: 22409158 [TBL] [Abstract][Full Text] [Related]
3. Targeted metabolomics for Aspergillus oryzae-mediated biotransformation of soybean isoflavones, showing variations in primary metabolites. Lee S; Seo MH; Oh DK; Lee CH Biosci Biotechnol Biochem; 2014; 78(1):167-74. PubMed ID: 25036500 [TBL] [Abstract][Full Text] [Related]
4. Aspergillus oryzae GB-107 fermentation improves nutritional quality of food soybeans and feed soybean meals. Hong KJ; Lee CH; Kim SW J Med Food; 2004; 7(4):430-5. PubMed ID: 15671685 [TBL] [Abstract][Full Text] [Related]
5. Production of 8-hydroxydaidzein from soybean extract by Aspergillus oryzae KACC 40247. Seo MH; Kim BN; Kim KR; Lee KW; Lee CH; Oh DK Biosci Biotechnol Biochem; 2013; 77(6):1245-50. PubMed ID: 23748754 [TBL] [Abstract][Full Text] [Related]
6. Improvement of the functional value of green soybean (edamame) using germination and tempe fermentation: A comparative metabolomics study. Iman MN; Irdiani R; Rahmawati D; Fukusaki E; Putri SP J Biosci Bioeng; 2023 Sep; 136(3):205-212. PubMed ID: 37331843 [TBL] [Abstract][Full Text] [Related]
7. Induction of the soybean phytoalexins coumestrol and glyceollin by Aspergillus. Boué SM; Carter CH; Ehrlich KC; Cleveland TE J Agric Food Chem; 2000 Jun; 48(6):2167-72. PubMed ID: 10888516 [TBL] [Abstract][Full Text] [Related]
8. Compositional changes in (iso)flavonoids and estrogenic activity of three edible Lupinus species by germination and Rhizopus-elicitation. Aisyah S; Vincken JP; Andini S; Mardiah Z; Gruppen H Phytochemistry; 2016 Feb; 122():65-75. PubMed ID: 26749476 [TBL] [Abstract][Full Text] [Related]
9. Comprehensive Metabolite Profiling of Four Different Beans Fermented by Lee YH; Lee NR; Lee CH Molecules; 2022 Nov; 27(22):. PubMed ID: 36432017 [TBL] [Abstract][Full Text] [Related]
10. Metabolomic study of the soybean pastes fermented by the single species Penicillium glabrum GQ1-3 and Aspergillus oryzae HGPA20. Sun X; Lyu G; Luan Y; Yang H; Zhao Z Food Chem; 2019 Oct; 295():622-629. PubMed ID: 31174804 [TBL] [Abstract][Full Text] [Related]
11. Simultaneous enhancement of free isoflavone content and antioxidant potential of soybean by fermentation with Aspergillus oryzae. Hwan Nam D; Jung Kim H; Sun Lim J; Heon Kim K; Park CS; Hwan Kim J; Lim J; Young Kwon D; Kim IH; Kim JS J Food Sci; 2011 Oct; 76(8):H194-200. PubMed ID: 22417591 [TBL] [Abstract][Full Text] [Related]
12. Untargeted metabolite profiling for koji-fermentative bioprocess unravels the effects of varying substrate types and microbial inocula. Seo HS; Lee S; Singh D; Shin HW; Cho SA; Lee CH Food Chem; 2018 Nov; 266():161-169. PubMed ID: 30381171 [TBL] [Abstract][Full Text] [Related]
13. Effects of UV-B radiation on the isoflavone accumulation and physiological-biochemical changes of soybean during germination: Physiological-biochemical change of germinated soybean induced by UV-B. Ma M; Wang P; Yang R; Gu Z Food Chem; 2018 Jun; 250():259-267. PubMed ID: 29412920 [TBL] [Abstract][Full Text] [Related]
14. Metabolism of the soy isoflavones daidzein and genistein by fungi used in the preparation of various fermented soybean foods. Chang TS; Ding HY; Tai SS; Wu CY Biosci Biotechnol Biochem; 2007 May; 71(5):1330-3. PubMed ID: 17485838 [TBL] [Abstract][Full Text] [Related]
15. Decoding the biochemical dialogue: metabolomic insights into soybean defense strategies against diverse pathogens. Qiu M; Tian M; Sun Y; Li H; Huang W; Ouyang H; Lin S; Zhang C; Wang M; Wang Y Sci China Life Sci; 2024 Oct; 67(10):2234-2250. PubMed ID: 38965141 [TBL] [Abstract][Full Text] [Related]
16. Isolation of a new metabolite from biotransformation of daidzein by Aspergillus oryzae. Chen YC; Sugiyama Y; Hirota A Biosci Biotechnol Biochem; 2009 Aug; 73(8):1877-9. PubMed ID: 19661709 [TBL] [Abstract][Full Text] [Related]
17. Effect of germination environment on the biochemical compounds and anti-inflammatory properties of soybean cultivars. Eum HL; Park Y; Yi TG; Lee JW; Ha KS; Choi IY; Park NI PLoS One; 2020; 15(4):e0232159. PubMed ID: 32339211 [TBL] [Abstract][Full Text] [Related]
18. A Multi-Omics Analysis of Glycine max Leaves Reveals Alteration in Flavonoid and Isoflavonoid Metabolism Upon Ethylene and Abscisic Acid Treatment. Gupta R; Min CW; Kramer K; Agrawal GK; Rakwal R; Park KH; Wang Y; Finkemeier I; Kim ST Proteomics; 2018 Apr; 18(7):e1700366. PubMed ID: 29457974 [TBL] [Abstract][Full Text] [Related]
19. Varying Inocula Permutations ( Gil HJ; Lee S; Singh D; Lee C J Microbiol Biotechnol; 2018 Dec; 28(12):1971-1981. PubMed ID: 30380825 [TBL] [Abstract][Full Text] [Related]
20. Simple metabolite extraction method for metabolic profiling of the solid-state fermentation of Aspergillus oryzae. Tokuoka M; Sawamura N; Kobayashi K; Mizuno A J Biosci Bioeng; 2010 Dec; 110(6):665-9. PubMed ID: 20685162 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]