These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 34214391)

  • 1. Computational Prediction of All Lanthanide Aqua Ion Acidity Constants.
    Shiery RC; Cooper KA; Cantu DC
    Inorg Chem; 2021 Jul; 60(14):10257-10266. PubMed ID: 34214391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selectivity of the highly preorganized tetradentate ligand 2,9-di(pyrid-2-yl)-1,10-phenanthroline for metal ions in aqueous solution, including lanthanide(III) ions and the uranyl(VI) cation.
    Carolan AN; Cockrell GM; Williams NJ; Zhang G; VanDerveer DG; Lee HS; Thummel RP; Hancock RD
    Inorg Chem; 2013 Jan; 52(1):15-27. PubMed ID: 23231454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting lanthanide coordination structures in solution with molecular simulation.
    Cantu DC
    Methods Enzymol; 2021; 651():193-233. PubMed ID: 33888204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphodiester hydrolysis by lanthanide complexes of bis-tris propane.
    Gómez-Tagle P; Yatsimirsky AK
    Inorg Chem; 2001 Jul; 40(15):3786-96. PubMed ID: 11442378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 17O nuclear quadrupole coupling constants of water bound to a metal ion: a gadolinium(III) case study.
    Yazyev OV; Helm L
    J Chem Phys; 2006 Aug; 125(5):054503. PubMed ID: 16942222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and hydrolysis of the U(IV), U(V), and U(VI) aqua ions from ab initio molecular simulations.
    Atta-Fynn R; Johnson DF; Bylaska EJ; Ilton ES; Schenter GK; de Jong WA
    Inorg Chem; 2012 Mar; 51(5):3016-24. PubMed ID: 22339109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of proton affinities and acidity constants of sugars.
    Feng S; Bagia C; Mpourmpakis G
    J Phys Chem A; 2013 Jun; 117(24):5211-9. PubMed ID: 23706015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic Study of Enhanced Protonation by Chromium(III) in Electrospray Ionization: A Superacid Bound to a Peptide.
    Persaud RR; Dieke NE; Jing X; Lambert S; Parsa N; Hartmann E; Vincent JB; Cassady CJ; Dixon DA
    J Am Soc Mass Spectrom; 2020 Feb; 31(2):308-318. PubMed ID: 32031389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coordination ability of trans-cyclohexane-1,2-diamine-N,N,N',N'-tetrakis(methylenephosphonic acid) towards lanthanide(III) ions.
    Gałezowska J; Janicki R; Mondry A; Burgada R; Bailly T; Lecouvey M; Kozłowski H
    Dalton Trans; 2006 Sep; (36):4384-94. PubMed ID: 16967123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Varying acidity of aqua ligands in dependence on the microenvironment in mononucleobase (nb) complexes of type cis- and trans-[Pt(NH3)2(nb)(H2O)]n+.
    Lax PM; Añorbe MG; Müller B; Bivián-Castro EY; Lippert B
    Inorg Chem; 2007 May; 46(10):4036-43. PubMed ID: 17439115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semiempirical Molecular Orbital Scheme To Study Lanthanide(III) Complexes:  PM3 Parameters for Europium, Gadolinium, and Ytterbium.
    McNamara JP; Berrigan SD; Hillier IH
    J Chem Theory Comput; 2007 May; 3(3):1014-27. PubMed ID: 26627420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nuclear quantum effects on autoionization of water isotopologs studied by ab initio path integral molecular dynamics.
    Thomsen B; Shiga M
    J Chem Phys; 2021 Feb; 154(8):084117. PubMed ID: 33639728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tri- and tetra-substituted cyclen based lanthanide(III) ion complexes as ribonuclease mimics: a study into the effect of log Ka, hydration and hydrophobicity on phosphodiester hydrolysis of the RNA-model 2-hydroxypropyl-4-nitrophenyl phosphate (HPNP).
    Fanning AM; Plush SE; Gunnlaugsson T
    Org Biomol Chem; 2015 May; 13(20):5804-16. PubMed ID: 25909178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulations of the water exchange dynamics of lanthanide ions in 1-ethyl-3-methylimidazolium ethyl sulfate ([EMIm][EtSO
    Tu YJ; Allen MJ; Cisneros GA
    Phys Chem Chem Phys; 2016 Nov; 18(44):30323-30333. PubMed ID: 27828553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Including and Declaring Structural Fluctuations in the Study of Lanthanide(III) Coordination Chemistry in Solution.
    Nielsen LG; Sørensen TJ
    Inorg Chem; 2020 Jan; 59(1):94-105. PubMed ID: 31687812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the Use of Aqueous Metal-Aqua p
    Kumar A; Blakemore JD
    Inorg Chem; 2021 Jan; 60(2):1107-1115. PubMed ID: 33405902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural characteristics of protein binding sites for calcium and lanthanide ions.
    Pidcock E; Moore GR
    J Biol Inorg Chem; 2001 Jun; 6(5-6):479-89. PubMed ID: 11472012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attempted syntheses of lanthanide(III) complexes of the anisole- and anilinosquarate ligands.
    Piggot PM; Hall LA; White AJ; Williams DJ
    Inorg Chem; 2003 Dec; 42(25):8344-52. PubMed ID: 14658887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical calculations of stability constants and pKa values of metal complexes in solution: application to pyridoxamine-copper(II) complexes and their biological implications in AGE inhibition.
    Casasnovas R; Ortega-Castro J; Donoso J; Frau J; Muñoz F
    Phys Chem Chem Phys; 2013 Oct; 15(38):16303-13. PubMed ID: 23999915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lanthanide complex coordination polyhedron geometry prediction accuracies of ab initio effective core potential calculations.
    Freire RO; Rocha GB; Simas AM
    J Mol Model; 2006 Mar; 12(4):373-89. PubMed ID: 16465508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.