BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 34214490)

  • 1. Vangl2 limits chaperone-mediated autophagy to balance osteogenic differentiation in mesenchymal stem cells.
    Gong Y; Li Z; Zou S; Deng D; Lai P; Hu H; Yao Y; Hu L; Zhang S; Li K; Wei T; Zhao X; Xiao G; Chen Z; Jiang Y; Bai X; Zou Z
    Dev Cell; 2021 Jul; 56(14):2103-2120.e9. PubMed ID: 34214490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lysosome membrane lipid microdomains: novel regulators of chaperone-mediated autophagy.
    Kaushik S; Massey AC; Cuervo AM
    EMBO J; 2006 Sep; 25(17):3921-33. PubMed ID: 16917501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chaperone-mediated autophagy.
    Dice JF
    Autophagy; 2007; 3(4):295-9. PubMed ID: 17404494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Entering the lysosome through a transient gate by chaperone-mediated autophagy.
    Bandyopadhyay U; Cuervo AM
    Autophagy; 2008 Nov; 4(8):1101-3. PubMed ID: 18927485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altered dynamics of the lysosomal receptor for chaperone-mediated autophagy with age.
    Kiffin R; Kaushik S; Zeng M; Bandyopadhyay U; Zhang C; Massey AC; Martinez-Vicente M; Cuervo AM
    J Cell Sci; 2007 Mar; 120(Pt 5):782-91. PubMed ID: 17284523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of transmembrane domain of lysosome-associated membrane protein type 2a (LAMP-2A) reveals key features for substrate specificity in chaperone-mediated autophagy.
    Rout AK; Strub MP; Piszczek G; Tjandra N
    J Biol Chem; 2014 Dec; 289(51):35111-23. PubMed ID: 25342746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane.
    Bandyopadhyay U; Kaushik S; Varticovski L; Cuervo AM
    Mol Cell Biol; 2008 Sep; 28(18):5747-63. PubMed ID: 18644871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel PPARγ2 modulator sLZIP controls the balance between adipogenesis and osteogenesis during mesenchymal stem cell differentiation.
    Kim J; Ko J
    Cell Death Differ; 2014 Oct; 21(10):1642-55. PubMed ID: 24948012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tissue source determines the differentiation potentials of mesenchymal stem cells: a comparative study of human mesenchymal stem cells from bone marrow and adipose tissue.
    Xu L; Liu Y; Sun Y; Wang B; Xiong Y; Lin W; Wei Q; Wang H; He W; Wang B; Li G
    Stem Cell Res Ther; 2017 Dec; 8(1):275. PubMed ID: 29208029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suppression of SPRY4 Promotes Osteogenic Differentiation and Bone Formation of Mesenchymal Stem Cell.
    Park S; Arai Y; Kim BJ; Bello A; Ashraf S; Park H; Park KS; Lee SH
    Tissue Eng Part A; 2019 Dec; 25(23-24):1646-1657. PubMed ID: 30982407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regional deficiencies in chaperone-mediated autophagy underlie α-synuclein aggregation and neurodegeneration.
    Malkus KA; Ischiropoulos H
    Neurobiol Dis; 2012 Jun; 46(3):732-44. PubMed ID: 22426402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Role of Chaperone-Mediated Autophagy in Hepatitis C Virus-Induced Pathogenesis.
    Matsui C; Yuliandari P; Deng L; Abe T; Shoji I
    Front Cell Infect Microbiol; 2021; 11():796664. PubMed ID: 34926330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tumor necrosis factor inhibits mesenchymal stem cell differentiation into osteoblasts via the ubiquitin E3 ligase Wwp1.
    Zhao L; Huang J; Zhang H; Wang Y; Matesic LE; Takahata M; Awad H; Chen D; Xing L
    Stem Cells; 2011 Oct; 29(10):1601-10. PubMed ID: 21809421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of RHEB in Regulating Differentiation Fate of Mesenchymal Stem Cells for Cartilage and Bone Regeneration.
    Ashraf S; Han IB; Park H; Lee SH
    Int J Mol Sci; 2017 Apr; 18(4):. PubMed ID: 28441755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chaperone-mediated autophagy protects the bone formation from excessive inflammation through PI3K/AKT/GSK3β/β-catenin pathway.
    Hang K; Wang Y; Bai J; Wang Z; Wu W; Zhu W; Liu S; Pan Z; Chen J; Chen W
    FASEB J; 2024 May; 38(10):e23646. PubMed ID: 38795328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of c-MYC expression on proliferation, differentiation, and risk of neoplastic transformation of human mesenchymal stromal cells.
    Melnik S; Werth N; Boeuf S; Hahn EM; Gotterbarm T; Anton M; Richter W
    Stem Cell Res Ther; 2019 Mar; 10(1):73. PubMed ID: 30836996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of chaperone-mediated autophagy in degrading Huntington's disease-associated huntingtin protein.
    Qi L; Zhang XD
    Acta Biochim Biophys Sin (Shanghai); 2014 Feb; 46(2):83-91. PubMed ID: 24323530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alternative splicing in mesenchymal stem cell differentiation.
    Park JW; Fu S; Huang B; Xu RH
    Stem Cells; 2020 Oct; 38(10):1229-1240. PubMed ID: 32627865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulating Chaperone-Mediated Autophagy and Its Clinical Applications in Cancer.
    Hubert V; Weiss S; Rees AJ; Kain R
    Cells; 2022 Aug; 11(16):. PubMed ID: 36010638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovery of LAMP-2A as potential biomarkers for glioblastoma development by modulating apoptosis through N-CoR degradation.
    Wang Y; Zhang B; Wang J; Wu H; Xu S; Zhang J; Wang L
    Cell Commun Signal; 2021 Mar; 19(1):40. PubMed ID: 33761934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.