These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 34214560)

  • 1. Facile fabrication of bifunctional SnO-NiO heteromixture for efficient electrocatalytic urea and water oxidation in urea-rich waste water.
    Gopi S; Al-Mohaimeed AM; Elshikh MS; Yun K
    Environ Res; 2021 Oct; 201():111589. PubMed ID: 34214560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of support material on the electrocatalytic activity of nickel oxide nanoparticles for urea electro-oxidation reaction.
    Abdel Hameed RM; Medany SS
    J Colloid Interface Sci; 2018 Mar; 513():536-548. PubMed ID: 29179094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced hydrogen production via urea electrolysis over Ni-NiO electrodeposited on Ti mesh.
    Wang Y; Zhu M; Xie T; Liu S; Wang J
    Nanotechnology; 2023 Oct; 35(2):. PubMed ID: 37820612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spherical Ni/NiO nanoparticles decorated on nanoporous carbon (NNC) as an active electrode material for urea and water oxidation reactions.
    Chavan PP; Tanwade PD; Sapner VS; Sathe BR
    RSC Adv; 2023 Sep; 13(38):26940-26947. PubMed ID: 37692351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ni
    Ma K; Wang H; Kannan P; Subramanian P
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porous hetero-structured nickel oxide/nickel phosphide nanosheets as bifunctional electrocatalyst for hydrogen production via urea electrolysis.
    Xu X; Ji S; Wang H; Wang X; Linkov V; Wang R
    J Colloid Interface Sci; 2022 Jun; 615():163-172. PubMed ID: 35131498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of few-layered MoS₂ nanosheet-coated electrospun SnO₂ nanotube heterostructures for enhanced hydrogen evolution reaction.
    Huang Y; Miao YE; Zhang L; Tjiu WW; Pan J; Liu T
    Nanoscale; 2014 Sep; 6(18):10673-9. PubMed ID: 25089760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chitosan Supports Boosting NiCo
    Alamro FS; Hefnawy MA; Nafee SS; Al-Kadhi NS; Pashameah RA; Ahmed HA; Medany SS
    Polymers (Basel); 2023 Jul; 15(14):. PubMed ID: 37514447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NiO nanoparticles on graphene nanosheets at different calcination temperatures as effective electrocatalysts for urea electro-oxidation in alkaline medium.
    Abdel Hameed RM; Medany SS
    J Colloid Interface Sci; 2017 Dec; 508():291-302. PubMed ID: 28843108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrocatalyst based on Ni
    Wu Y; Wang H; Ren J; Xu X; Wang X; Wang R
    J Colloid Interface Sci; 2022 Feb; 608(Pt 3):2932-2941. PubMed ID: 34801236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-Cost Ni
    He M; Feng C; Liao T; Hu S; Wu H; Sun Z
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2225-2233. PubMed ID: 31850739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NiO-decorated graphitic carbon nitride toward electrocatalytic hydrogen production from ethanol.
    Chebanenko MI; Lobinsky AA; Nevedomskiy VN; Popkov VI
    Dalton Trans; 2020 Sep; 49(34):12088-12097. PubMed ID: 32820775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile synthesis of mesoporous spinel NiCo₂O₄ nanostructures as highly efficient electrocatalysts for urea electro-oxidation.
    Ding R; Qi L; Jia M; Wang H
    Nanoscale; 2014; 6(3):1369-76. PubMed ID: 24306055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ni
    Hu S; Feng C; Wang S; Liu J; Wu H; Zhang L; Zhang J
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13168-13175. PubMed ID: 30900444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Urea-oxidation-assisted electrochemical water splitting for hydrogen production on a bifunctional heterostructure transition metal phosphides combining metal-organic frameworks.
    Chen C; Jin L; Hu L; Zhang T; He J; Gu P; Xu Q; Lu J
    J Colloid Interface Sci; 2022 Dec; 628(Pt B):1008-1018. PubMed ID: 36049277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interfacial interaction induced OER activity of MOF derived superhydrophilic Co
    Gaur A; Pundir V; Krishankant ; Rai R; Kaur B; Maruyama T; Bera C; Bagchi V
    Dalton Trans; 2022 Feb; 51(5):2019-2025. PubMed ID: 35029620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile Gram-Scale Synthesis of NiO Nanoflowers for Highly Selective and Sensitive Electrocatalytic Detection of Hydrazine.
    Ferreira RM; Morawski FM; Pessanha EC; de Lima SLS; da Costa DS; Ribeiro GAC; Vaz J; Mouta R; Tanaka AA; Liu L; da Silva MIP; Tofanello A; Vitorino HA; da Silva AGM; Garcia MAS
    ACS Omega; 2023 Apr; 8(13):11978-11986. PubMed ID: 37033825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel Bifunctional V
    Qian G; Chen J; Luo L; Zhang H; Chen W; Gao Z; Yin S; Tsiakaras P
    ACS Appl Mater Interfaces; 2020 Aug; 12(34):38061-38069. PubMed ID: 32846500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal-organic framework-derived Ni@C and NiO@C as anode catalysts for urea fuel cells.
    Tran TQN; Park BJ; Yun WH; Duong TN; Yoon HH
    Sci Rep; 2020 Jan; 10(1):278. PubMed ID: 31937844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amorphous chromium oxide confined Ni/NiO nanoparticles-assembled nanosheets for highly efficient and stable overall urea splitting.
    Xu H; Zhang WD; Yao Y; Yang J; Liu J; Gu ZG; Yan X
    J Colloid Interface Sci; 2023 Jan; 629(Pt B):501-510. PubMed ID: 36174293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.