BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 34214721)

  • 1. Multi-axis alignment of Rod-like cellulose nanocrystals in drying droplets.
    Pritchard CQ; Navarro F; Roman M; Bortner MJ
    J Colloid Interface Sci; 2021 Dec; 603():450-458. PubMed ID: 34214721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of the Particle Concentration and Marangoni Flow on the Formation of Cellulose Nanocrystal Films.
    Gençer A; Schütz C; Thielemans W
    Langmuir; 2017 Jan; 33(1):228-234. PubMed ID: 28034313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic arrest during the drying of cellulose nanocrystal films from aqueous suspensions analogous to the freezing of thermal motions.
    Chang MH; Oh-E M
    Sci Rep; 2022 Dec; 12(1):21042. PubMed ID: 36470939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Gelation on the Colloidal Deposition of Cellulose Nanocrystal Films.
    Gençer A; Van Rie J; Lombardo S; Kang K; Thielemans W
    Biomacromolecules; 2018 Aug; 19(8):3233-3243. PubMed ID: 29953209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of arabinoxylan on the drying of cellulose nanocrystals suspension: From coffee ring to Maltese cross pattern and application to enzymatic detection.
    Talantikite M; Leray N; Durand S; Moreau C; Cathala B
    J Colloid Interface Sci; 2021 Apr; 587():727-735. PubMed ID: 33234309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chiral Nematic Structure of Cellulose Nanocrystal Suspensions and Films; Polarized Light and Atomic Force Microscopy.
    Gray DG; Mu X
    Materials (Basel); 2015 Nov; 8(11):7873-7888. PubMed ID: 28793684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anisotropic polymer composites synthesized by immobilizing cellulose nanocrystal suspensions specifically oriented under magnetic fields.
    Tatsumi M; Kimura F; Kimura T; Teramoto Y; Nishio Y
    Biomacromolecules; 2014 Dec; 15(12):4579-89. PubMed ID: 25390070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anisotropy and Nanomechanics of Cellulose Nanocrystals/Polyethylene Glycol Composite Films.
    Rajeev A; Natale G
    Biomacromolecules; 2022 Apr; 23(4):1592-1600. PubMed ID: 35344341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling Ultrafiltration Membrane Rejection via Shear-Aligned Deposition of Cellulose Nanocrystals from Aqueous Suspensions.
    Kocaman C; Bukusoglu E; Culfaz-Emecen PZ
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):36548-36557. PubMed ID: 34283581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Anisotropy of Cellulose Nanocrystal Suspensions on Stratification, Domain Structure Formation, and Structural Colors.
    Klockars KW; Tardy BL; Borghei M; Tripathi A; Greca LG; Rojas OJ
    Biomacromolecules; 2018 Jul; 19(7):2931-2943. PubMed ID: 29754482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capillary Flow Characterizations of Chiral Nematic Cellulose Nanocrystal Suspensions.
    Esmaeili M; George K; Rezvan G; Taheri-Qazvini N; Zhang R; Sadati M
    Langmuir; 2022 Feb; 38(7):2192-2204. PubMed ID: 35133841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shear-Induced Alignment of Anisotropic Nanoparticles in a Single-Droplet Oscillatory Microfluidic Platform.
    Alizadehgiashi M; Khabibullin A; Li Y; Prince E; Abolhasani M; Kumacheva E
    Langmuir; 2018 Jan; 34(1):322-330. PubMed ID: 29202244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Confined Shear Alignment of Ultrathin Films of Cellulose Nanocrystals.
    Jinkins KR; Wang J; Dwyer JH; Wang X; Arnold MS
    ACS Appl Bio Mater; 2021 Nov; 4(11):7961-7966. PubMed ID: 35006777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Order and gelation of cellulose nanocrystal suspensions: an overview of some issues.
    Gray DG
    Philos Trans A Math Phys Eng Sci; 2018 Feb; 376(2112):. PubMed ID: 29277736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrophobization of Cellulose Nanocrystals for Aqueous Colloidal Suspensions and Gels.
    Nigmatullin R; Johns MA; Muñoz-García JC; Gabrielli V; Schmitt J; Angulo J; Khimyak YZ; Scott JL; Edler KJ; Eichhorn SJ
    Biomacromolecules; 2020 May; 21(5):1812-1823. PubMed ID: 31984728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Liquid-crystalline assembly of spherical cellulose nanocrystals.
    Liu B; Cheng L; Yuan Y; Hu J; Zhou L; Zong L; Duan Y; Zhang J
    Int J Biol Macromol; 2023 Jul; 242(Pt 1):124738. PubMed ID: 37169056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origin of vacuum-assisted chiral self-assembly of cellulose nanocrystals.
    Wang Z; Yuan Y; Hu J; Yang J; Feng F; Yu Y; Liu P; Men Y; Zhang J
    Carbohydr Polym; 2020 Oct; 245():116459. PubMed ID: 32718601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dielectrophoresis of cellulose nanocrystals and alignment in ultrathin films by electric field-assisted shear assembly.
    Csoka L; Hoeger IC; Peralta P; Peszlen I; Rojas OJ
    J Colloid Interface Sci; 2011 Nov; 363(1):206-12. PubMed ID: 21840015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable Aggregation and Gelation of Thermoresponsive Suspensions of Polymer-Grafted Cellulose Nanocrystals.
    Azzam F; Siqueira E; Fort S; Hassaini R; Pignon F; Travelet C; Putaux JL; Jean B
    Biomacromolecules; 2016 Jun; 17(6):2112-9. PubMed ID: 27116589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of Cellulose Nanocrystal Alignment during 3D Printing.
    Hausmann MK; Rühs PA; Siqueira G; Läuger J; Libanori R; Zimmermann T; Studart AR
    ACS Nano; 2018 Jul; 12(7):6926-6937. PubMed ID: 29975510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.