BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 34214851)

  • 1. Insights into the transport of pristine and photoaged graphene oxide-hematite nanohybrids in saturated porous media: Impacts of XDLVO interactions and surface roughness.
    Xia T; Li S; Wang H; Guo C; Liu C; Liu A; Guo X; Zhu L
    J Hazard Mater; 2021 Oct; 419():126488. PubMed ID: 34214851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport and retention of reduced graphene oxide materials in saturated porous media: Synergistic effects of enhanced attachment and particle aggregation.
    Xia T; Ma P; Qi Y; Zhu L; Qi Z; Chen W
    Environ Pollut; 2019 Apr; 247():383-391. PubMed ID: 30690234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ionic specificity mediates the transport and retention of graphene-based nanomaterials in saturated porous media.
    Xia T; Xie Y; Bai S; Guo X; Zhu L; Zhang C
    Sci Total Environ; 2023 Jan; 854():158724. PubMed ID: 36108856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the Transport of the "New-Horizon" Reduced Graphene Oxide-Metal Oxide Nanohybrids in Water-Saturated Porous Media.
    Wang D; Jin Y; Park CM; Heo J; Bai X; Aich N; Su C
    Environ Sci Technol; 2018 Apr; 52(8):4610-4622. PubMed ID: 29582656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of polyamide microplastic on the transport of graphene oxide in porous media.
    Wu M; Chen Y; Cheng Z; Hao Y; Hu BX; Mo C; Li Q; Zhao H; Xiang L; Wu J; Wu J; Lu G
    Sci Total Environ; 2022 Oct; 843():157042. PubMed ID: 35777558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosurfactant-mediated mobility of graphene oxide nanoparticles in saturated porous media.
    Chen J; Zhang Q; Zhu Y; Li Y; Chen W; Lu T; Qi Z
    Environ Sci Process Impacts; 2022 Oct; 24(10):1883-1894. PubMed ID: 36148869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfide reduction can significantly enhance transport of biochar fine particles in saturated porous medium.
    Ma P; Chen W
    Environ Pollut; 2020 Aug; 263(Pt B):114445. PubMed ID: 32251981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-transport of negatively charged nanoparticles in saturated porous media: Impacts of hydrophobicity and surface O-functional groups.
    Xia T; Lin Y; Li S; Yan N; Xie Y; He M; Guo X; Zhu L
    J Hazard Mater; 2021 May; 409():124477. PubMed ID: 33172676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene oxide nanoparticles and hematite colloids behave oppositely in their co-transport in saturated porous media.
    Wang M; Zhang H; Chen W; Lu T; Yang H; Wang X; Lu M; Qi Z; Li D
    Chemosphere; 2021 Feb; 265():129081. PubMed ID: 33288283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene oxide-facilitated transport of Pb
    Jiang Y; Zhang X; Yin X; Sun H; Wang N
    Sci Total Environ; 2018 Aug; 631-632():369-376. PubMed ID: 29525715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport of graphene oxide in saturated porous media: effect of cation composition in mixed Na-Ca electrolyte systems.
    Fan W; Jiang XH; Yang W; Geng Z; Huo MX; Liu ZM; Zhou H
    Sci Total Environ; 2015 Apr; 511():509-15. PubMed ID: 25577737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aggregation of reduced graphene oxide and its nanohybrids with magnetite and elemental silver under environmentally relevant conditions.
    Park CM; Wang D; Heo J; Her N; Su C
    J Nanopart Res; 2018; 20():93. PubMed ID: 31595146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deposition and remobilization of graphene oxide within saturated sand packs.
    Feriancikova L; Xu S
    J Hazard Mater; 2012 Oct; 235-236():194-200. PubMed ID: 22884729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracellular polymeric substances induced cell-surface interactions facilitate bacteria transport in saturated porous media.
    Du M; Wang L; Ebrahimi A; Chen G; Shu S; Zhu K; Shen C; Li B; Wang G
    Ecotoxicol Environ Saf; 2021 May; 218():112291. PubMed ID: 33957420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using colloidal AFM probe technique and XDLVO theory to predict the transport of nanoplastics in porous media.
    Feng LJ; Shi ZL; Duan JL; Han Y; Sun XD; Ma JY; Liu XY; Zhang HX; Guo N; Song C; Zong WS; Yuan XZ
    Chemosphere; 2023 Jan; 311(Pt 1):136968. PubMed ID: 36283429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deposition and release of carboxylated graphene in saturated porous media: Effect of transient solution chemistry.
    He J; Wang D; Zhang W; Zhou D
    Chemosphere; 2019 Nov; 235():643-650. PubMed ID: 31276877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Humic acid-mediated transport of a typical soil passivation remediation product (chloropyromorphite) in saturated porous media.
    Li X; Zhang M; Li S; Wei W
    J Environ Sci (China); 2024 Jul; 141():51-62. PubMed ID: 38408834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cotransport of hydroxyapatite nanoparticles and hematite colloids in saturated porous media: Mechanistic insights from mathematical modeling and phosphate oxygen isotope fractionation.
    Wang D; Jin Y; Jaisi DP
    J Contam Hydrol; 2015 Nov; 182():194-209. PubMed ID: 26409895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-transport of graphene oxide and titanium dioxide nanoparticles in saturated quartz sand: Influences of solution pH and metal ions.
    Xia T; Lin Y; Guo X; Li S; Cui J; Ping H; Zhang J; Zhong R; Du L; Han C; Zhu L
    Environ Pollut; 2019 Aug; 251():723-730. PubMed ID: 31112926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors controlling transport of graphene oxide nanoparticles in saturated sand columns.
    Qi Z; Zhang L; Wang F; Hou L; Chen W
    Environ Toxicol Chem; 2014 May; 33(5):998-1004. PubMed ID: 24453090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.