These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Stable fabrication of a large nanopore by controlled dielectric breakdown in a high-pH solution for the detection of various-sized molecules. Yanagi I; Akahori R; Takeda KI Sci Rep; 2019 Sep; 9(1):13143. PubMed ID: 31511597 [TBL] [Abstract][Full Text] [Related]
6. Formation of Single Nanopores with Diameters of 20-50 nm in Silicon Nitride Membranes Using Laser-Assisted Controlled Breakdown. Ying C; Houghtaling J; Eggenberger OM; Guha A; Nirmalraj P; Awasthi S; Tian J; Mayer M ACS Nano; 2018 Nov; 12(11):11458-11470. PubMed ID: 30335956 [TBL] [Abstract][Full Text] [Related]
7. Two-step breakdown of a SiN membrane for nanopore fabrication: Formation of thin portion and penetration. Yanagi I; Hamamura H; Akahori R; Takeda KI Sci Rep; 2018 Jul; 8(1):10129. PubMed ID: 29973672 [TBL] [Abstract][Full Text] [Related]
8. Photothermally Assisted Thinning of Silicon Nitride Membranes for Ultrathin Asymmetric Nanopores. Yamazaki H; Hu R; Zhao Q; Wanunu M ACS Nano; 2018 Dec; 12(12):12472-12481. PubMed ID: 30457833 [TBL] [Abstract][Full Text] [Related]
9. A low-noise solid-state nanopore platform based on a highly insulating substrate. Lee MH; Kumar A; Park KB; Cho SY; Kim HM; Lim MC; Kim YR; Kim KB Sci Rep; 2014 Dec; 4():7448. PubMed ID: 25502421 [TBL] [Abstract][Full Text] [Related]
10. Lifetime and Stability of Silicon Nitride Nanopores and Nanopore Arrays for Ionic Measurements. Chou YC; Masih Das P; Monos DS; Drndić M ACS Nano; 2020 Jun; 14(6):6715-6728. PubMed ID: 32275381 [TBL] [Abstract][Full Text] [Related]
11. Integration of solid-state nanopores in a 0.5 μm CMOS foundry process. Uddin A; Yemenicioglu S; Chen CH; Corigliano E; Milaninia K; Theogarajan L Nanotechnology; 2013 Apr; 24(15):155501. PubMed ID: 23519330 [TBL] [Abstract][Full Text] [Related]
12. Noise and sensitivity characteristics of solid-state nanopores with a boron nitride 2-D membrane on a pyrex substrate. Park KB; Kim HJ; Kim HM; Han SA; Lee KH; Kim SW; Kim KB Nanoscale; 2016 Mar; 8(10):5755-63. PubMed ID: 26909465 [TBL] [Abstract][Full Text] [Related]
13. Solid-state nanopore localization by controlled breakdown of selectively thinned membranes. Carlsen AT; Briggs K; Hall AR; Tabard-Cossa V Nanotechnology; 2017 Feb; 28(8):085304-85304. PubMed ID: 28045003 [TBL] [Abstract][Full Text] [Related]
14. Rapid manufacturing of low-noise membranes for nanopore sensors by trans-chip illumination lithography. Janssen XJ; Jonsson MP; Plesa C; Soni GV; Dekker C; Dekker NH Nanotechnology; 2012 Nov; 23(47):475302. PubMed ID: 23103750 [TBL] [Abstract][Full Text] [Related]
15. DNA Translocation in Nanometer Thick Silicon Nanopores. Rodríguez-Manzo JA; Puster M; Nicolaï A; Meunier V; Drndić M ACS Nano; 2015 Jun; 9(6):6555-64. PubMed ID: 26035079 [TBL] [Abstract][Full Text] [Related]
16. Control of shape and material composition of solid-state nanopores. Wu MY; Smeets RM; Zandbergen M; Ziese U; Krapf D; Batson PE; Dekker NH; Dekker C; Zandbergen HW Nano Lett; 2009 Jan; 9(1):479-84. PubMed ID: 19143508 [TBL] [Abstract][Full Text] [Related]
17. Facile and Ultraclean Graphene-on-Glass Nanopores by Controlled Electrochemical Etching. Zhang X; van Deursen PMG; Fu W; Schneider GF ACS Sens; 2020 Aug; 5(8):2317-2325. PubMed ID: 32573208 [TBL] [Abstract][Full Text] [Related]