These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 34214991)

  • 1. Sub-10-nm-thick SiN nanopore membranes fabricated using the SiO
    Yanagi I; Takeda KI
    Nanotechnology; 2021 Jul; 32(41):. PubMed ID: 34214991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of 3-nm-thick Si3N4 membranes for solid-state nanopores using the poly-Si sacrificial layer process.
    Yanagi I; Ishida T; Fujisaki K; Takeda K
    Sci Rep; 2015 Oct; 5():14656. PubMed ID: 26424588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multichannel detection of ionic currents through two nanopores fabricated on integrated Si3N4 membranes.
    Yanagi I; Akahori R; Aoki M; Harada K; Takeda K
    Lab Chip; 2016 Aug; 16(17):3340-50. PubMed ID: 27440476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrathin, High-Lifetime Silicon Nitride Membranes for Nanopore Sensing.
    Dutt S; Karawdeniya BI; Bandara YMNDY; Afrin N; Kluth P
    Anal Chem; 2023 Apr; 95(13):5754-5763. PubMed ID: 36930050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stable fabrication of a large nanopore by controlled dielectric breakdown in a high-pH solution for the detection of various-sized molecules.
    Yanagi I; Akahori R; Takeda KI
    Sci Rep; 2019 Sep; 9(1):13143. PubMed ID: 31511597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of Single Nanopores with Diameters of 20-50 nm in Silicon Nitride Membranes Using Laser-Assisted Controlled Breakdown.
    Ying C; Houghtaling J; Eggenberger OM; Guha A; Nirmalraj P; Awasthi S; Tian J; Mayer M
    ACS Nano; 2018 Nov; 12(11):11458-11470. PubMed ID: 30335956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-step breakdown of a SiN membrane for nanopore fabrication: Formation of thin portion and penetration.
    Yanagi I; Hamamura H; Akahori R; Takeda KI
    Sci Rep; 2018 Jul; 8(1):10129. PubMed ID: 29973672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photothermally Assisted Thinning of Silicon Nitride Membranes for Ultrathin Asymmetric Nanopores.
    Yamazaki H; Hu R; Zhao Q; Wanunu M
    ACS Nano; 2018 Dec; 12(12):12472-12481. PubMed ID: 30457833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A low-noise solid-state nanopore platform based on a highly insulating substrate.
    Lee MH; Kumar A; Park KB; Cho SY; Kim HM; Lim MC; Kim YR; Kim KB
    Sci Rep; 2014 Dec; 4():7448. PubMed ID: 25502421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lifetime and Stability of Silicon Nitride Nanopores and Nanopore Arrays for Ionic Measurements.
    Chou YC; Masih Das P; Monos DS; Drndić M
    ACS Nano; 2020 Jun; 14(6):6715-6728. PubMed ID: 32275381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of solid-state nanopores in a 0.5 μm CMOS foundry process.
    Uddin A; Yemenicioglu S; Chen CH; Corigliano E; Milaninia K; Theogarajan L
    Nanotechnology; 2013 Apr; 24(15):155501. PubMed ID: 23519330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noise and sensitivity characteristics of solid-state nanopores with a boron nitride 2-D membrane on a pyrex substrate.
    Park KB; Kim HJ; Kim HM; Han SA; Lee KH; Kim SW; Kim KB
    Nanoscale; 2016 Mar; 8(10):5755-63. PubMed ID: 26909465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solid-state nanopore localization by controlled breakdown of selectively thinned membranes.
    Carlsen AT; Briggs K; Hall AR; Tabard-Cossa V
    Nanotechnology; 2017 Feb; 28(8):085304-85304. PubMed ID: 28045003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid manufacturing of low-noise membranes for nanopore sensors by trans-chip illumination lithography.
    Janssen XJ; Jonsson MP; Plesa C; Soni GV; Dekker C; Dekker NH
    Nanotechnology; 2012 Nov; 23(47):475302. PubMed ID: 23103750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA Translocation in Nanometer Thick Silicon Nanopores.
    Rodríguez-Manzo JA; Puster M; Nicolaï A; Meunier V; Drndić M
    ACS Nano; 2015 Jun; 9(6):6555-64. PubMed ID: 26035079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of shape and material composition of solid-state nanopores.
    Wu MY; Smeets RM; Zandbergen M; Ziese U; Krapf D; Batson PE; Dekker NH; Dekker C; Zandbergen HW
    Nano Lett; 2009 Jan; 9(1):479-84. PubMed ID: 19143508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile and Ultraclean Graphene-on-Glass Nanopores by Controlled Electrochemical Etching.
    Zhang X; van Deursen PMG; Fu W; Schneider GF
    ACS Sens; 2020 Aug; 5(8):2317-2325. PubMed ID: 32573208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoporous silicon nitride membranes fabricated from porous nanocrystalline silicon templates.
    DesOrmeaux JP; Winans JD; Wayson SE; Gaborski TR; Khire TS; Striemer CC; McGrath JL
    Nanoscale; 2014 Sep; 6(18):10798-805. PubMed ID: 25105590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perforated, freely suspended layer-by-layer nanoscale membranes.
    Zimnitsky D; Shevchenko VV; Tsukruk VV
    Langmuir; 2008 Jun; 24(12):5996-6006. PubMed ID: 18457436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanopore arrays in a silicon membrane for parallel single-molecule detection: fabrication.
    Schmidt T; Zhang M; Sychugov I; Roxhed N; Linnros J
    Nanotechnology; 2015 Aug; 26(31):314001. PubMed ID: 26180043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.