These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 34215053)

  • 1. A weak shear stress microfluidic device based on Viscoelastic Stagnant Region (VSR) for biosensitive particle capture.
    Lu Y; Tan W; Shi X; Liu M; Zhu G
    Talanta; 2021 Oct; 233():122550. PubMed ID: 34215053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Concentration-controlled particle focusing in spiral elasto-inertial microfluidic devices.
    Xiang N; Ni Z; Yi H
    Electrophoresis; 2018 Jan; 39(2):417-424. PubMed ID: 28990196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elastic-inertial separation of microparticle in a gradually contracted microchannel.
    Tian ZZ; Gan CS; Fan LL; Wang JC; Zhao L
    Electrophoresis; 2022 Nov; 43(21-22):2217-2226. PubMed ID: 36084168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sheathless Inertial Focusing Chip Combining a Spiral Channel with Periodic Expansion Structures for Efficient and Stable Particle Sorting.
    Gou Y; Zhang S; Sun C; Wang P; You Z; Yalikun Y; Tanaka Y; Ren D
    Anal Chem; 2020 Jan; 92(2):1833-1841. PubMed ID: 31858787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of viscoelastic focusing of particles and cells in a zigzag microchannel.
    Yuan D; Yadav S; Ta HT; Fallahi H; An H; Kashaninejad N; Ooi CH; Nguyen NT; Zhang J
    Electrophoresis; 2021 Nov; 42(21-22):2230-2237. PubMed ID: 34396540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inertial separation in a contraction-expansion array microchannel.
    Lee MG; Choi S; Park JK
    J Chromatogr A; 2011 Jul; 1218(27):4138-43. PubMed ID: 21176909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oscillatory inertial focusing in infinite microchannels.
    Mutlu BR; Edd JF; Toner M
    Proc Natl Acad Sci U S A; 2018 Jul; 115(30):7682-7687. PubMed ID: 29991599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. "From the Edge to the Center": Viscoelastic Migration of Particles and Cells in a Strongly Shear-Thinning Liquid Flowing in a Microchannel.
    Del Giudice F; Sathish S; D'Avino G; Shen AQ
    Anal Chem; 2017 Dec; 89(24):13146-13159. PubMed ID: 29083161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inertial microfluidics for continuous particle separation in spiral microchannels.
    Kuntaegowdanahalli SS; Bhagat AA; Kumar G; Papautsky I
    Lab Chip; 2009 Oct; 9(20):2973-80. PubMed ID: 19789752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impedance-based viscoelastic flow cytometry.
    Serhatlioglu M; Asghari M; Tahsin Guler M; Elbuken C
    Electrophoresis; 2019 Mar; 40(6):906-913. PubMed ID: 30632175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Dean-flow-coupled interfacial viscoelastic fluid for microparticle separation applied in a cell smear method.
    Shi X; Liu L; Cao W; Zhu G; Tan W
    Analyst; 2019 Oct; 144(20):5934-5946. PubMed ID: 31483419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size-tunable microvortex capture of rare cells.
    Khojah R; Stoutamore R; Di Carlo D
    Lab Chip; 2017 Jul; 17(15):2542-2549. PubMed ID: 28613306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct separation and enumeration of CTCs in viscous blood based on co-flow microchannel with tunable shear rate: a proof-of-principle study.
    Li M; Ge C; Yang Y; Gan M; Xu Y; Chen L; Li S
    Anal Bioanal Chem; 2022 Nov; 414(26):7683-7694. PubMed ID: 36048191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inertial lift enhanced phase partitioning for continuous microfluidic surface energy based sorting of particles.
    Parichehreh V; Sethu P
    Lab Chip; 2012 Apr; 12(7):1296-301. PubMed ID: 22336961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elasto-Inertial Focusing Mechanisms of Particles in Shear-Thinning Viscoelastic Fluid in Rectangular Microchannels.
    Naderi MM; Barilla L; Zhou J; Papautsky I; Peng Z
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Viscoelastic microfluidics for enhanced separation resolution of submicron particles and extracellular vesicles.
    Hettiarachchi S; Ouyang L; Cha H; Hansen HHWB; An H; Nguyen NT; Zhang J
    Nanoscale; 2024 Feb; 16(7):3560-3570. PubMed ID: 38289397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High throughput viscoelastic particle focusing and separation in spiral microchannels.
    Kumar T; Ramachandraiah H; Iyengar SN; Banerjee I; MÃ¥rtensson G; Russom A
    Sci Rep; 2021 Apr; 11(1):8467. PubMed ID: 33875755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separation of exfoliated tumor cells from viscoelastic pleural effusion using a microfluidic sandwich structure.
    Shi X; Tan W; Liu L; Cao W; Wang Y; Zhu G
    Anal Bioanal Chem; 2020 Sep; 412(22):5513-5523. PubMed ID: 32577800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separation and Enrichment of Yeast
    Liu P; Liu H; Yuan D; Jang D; Yan S; Li M
    Anal Chem; 2021 Jan; 93(3):1586-1595. PubMed ID: 33289547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.