These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 34215291)
1. CAZyme prediction in ascomycetous yeast genomes guides discovery of novel xylanolytic species with diverse capacities for hemicellulose hydrolysis. Ravn JL; Engqvist MKM; Larsbrink J; Geijer C Biotechnol Biofuels; 2021 Jul; 14(1):150. PubMed ID: 34215291 [TBL] [Abstract][Full Text] [Related]
2. Yeasts Have Evolved Divergent Enzyme Strategies To Deconstruct and Metabolize Xylan. Ravn JL; Ristinmaa AS; Coleman T; Larsbrink J; Geijer C Microbiol Spectr; 2023 Jun; 11(3):e0024523. PubMed ID: 37098941 [TBL] [Abstract][Full Text] [Related]
3. Cellulose- and xylan-degrading yeasts: Enzymes, applications and biotechnological potential. Šuchová K; Fehér C; Ravn JL; Bedő S; Biely P; Geijer C Biotechnol Adv; 2022 Oct; 59():107981. PubMed ID: 35580749 [TBL] [Abstract][Full Text] [Related]
4. Identification and characterisation of xylanolytic yeasts isolated from decaying wood and sugarcane bagasse in Brazil. Lara CA; Santos RO; Cadete RM; Ferreira C; Marques S; Gírio F; Oliveira ES; Rosa CA; Fonseca C Antonie Van Leeuwenhoek; 2014 Jun; 105(6):1107-19. PubMed ID: 24748334 [TBL] [Abstract][Full Text] [Related]
5. Yeast GH30 Xylanase from Šuchová K; Chyba A; Hegyi Z; Rebroš M; Puchart V Molecules; 2022 Jan; 27(3):. PubMed ID: 35164030 [TBL] [Abstract][Full Text] [Related]
6. Comprehensive Genome Analysis of Cellulose and Xylan-Active CAZymes from the Genus Mukherjee S; Lodha TD; Madhuprakash J Microbiol Spectr; 2023 Jun; 11(3):e0502822. PubMed ID: 37071006 [TBL] [Abstract][Full Text] [Related]
7. Insights into the plant polysaccharide degradation potential of the xylanolytic yeast Pseudozyma brasiliensis. Kaupert Neto AA; Borin GP; Goldman GH; Damásio AR; Oliveira JV FEMS Yeast Res; 2016 Mar; 16(2):fov117. PubMed ID: 26712719 [TBL] [Abstract][Full Text] [Related]
8. Two degradation strategies for overcoming the recalcitrance of natural lignocellulosic xylan by polysaccharides-binding GH10 and GH11 xylanases of filamentous fungi. Miao Y; Li P; Li G; Liu D; Druzhinina IS; Kubicek CP; Shen Q; Zhang R Environ Microbiol; 2017 Mar; 19(3):1054-1064. PubMed ID: 27878934 [TBL] [Abstract][Full Text] [Related]
9. Acetylated Xylan Degradation by Glycoside Hydrolase Family 10 and 11 Xylanases from the White-rot Fungus Kojima K; Sunagawa N; Yoshimi Y; Tryfona T; Samejima M; Dupree P; Igarashi K J Appl Glycosci (1999); 2022; 69(2):35-43. PubMed ID: 35891899 [TBL] [Abstract][Full Text] [Related]
10. Synergistic mechanism of GH11 xylanases with different action modes from Aspergillus niger An76. Zhang S; Zhao S; Shang W; Yan Z; Wu X; Li Y; Chen G; Liu X; Wang L Biotechnol Biofuels; 2021 May; 14(1):118. PubMed ID: 33971954 [TBL] [Abstract][Full Text] [Related]
11. Biochemical and Regulatory Analyses of Xylanolytic Regulons in Caldicellulosiruptor bescii Reveal Genus-Wide Features of Hemicellulose Utilization. Crosby JR; Laemthong T; Bing RG; Zhang K; Tanwee TNN; Lipscomb GL; Rodionov DA; Zhang Y; Adams MWW; Kelly RM Appl Environ Microbiol; 2022 Nov; 88(21):e0130222. PubMed ID: 36218355 [No Abstract] [Full Text] [Related]
12. Cellulolytic and Xylanolytic Enzymes from Yeasts: Properties and Industrial Applications. Sohail M; Barzkar N; Michaud P; Tamadoni Jahromi S; Babich O; Sukhikh S; Das R; Nahavandi R Molecules; 2022 Jun; 27(12):. PubMed ID: 35744909 [TBL] [Abstract][Full Text] [Related]
13. Functional analyses of xylanolytic enzymes involved in xylan degradation and utilization in Neurospora crassa. Wang R; Arioka M Int J Biol Macromol; 2021 Feb; 169():302-310. PubMed ID: 33333093 [TBL] [Abstract][Full Text] [Related]
14. Genomic and transcriptomic analysis of the thermophilic lignocellulose-degrading fungus Thielavia terrestris LPH172. Tõlgo M; Hüttner S; Rugbjerg P; Thuy NT; Thanh VN; Larsbrink J; Olsson L Biotechnol Biofuels; 2021 Jun; 14(1):131. PubMed ID: 34082802 [TBL] [Abstract][Full Text] [Related]
15. The hemicellulose-degrading enzyme system of the thermophilic bacterium Broeker J; Mechelke M; Baudrexl M; Mennerich D; Hornburg D; Mann M; Schwarz WH; Liebl W; Zverlov VV Biotechnol Biofuels; 2018; 11():229. PubMed ID: 30159029 [TBL] [Abstract][Full Text] [Related]
16. Combined genome and transcriptome sequencing to investigate the plant cell wall degrading enzyme system in the thermophilic fungus Hüttner S; Nguyen TT; Granchi Z; Chin-A-Woeng T; Ahrén D; Larsbrink J; Thanh VN; Olsson L Biotechnol Biofuels; 2017; 10():265. PubMed ID: 29158777 [TBL] [Abstract][Full Text] [Related]
17. GH30 Glucuronoxylan-Specific Xylanase from Streptomyces turgidiscabies C56. Maehara T; Yagi H; Sato T; Ohnishi-Kameyama M; Fujimoto Z; Kamino K; Kitamura Y; St John F; Yaoi K; Kaneko S Appl Environ Microbiol; 2018 Feb; 84(4):. PubMed ID: 29180367 [TBL] [Abstract][Full Text] [Related]
18. Cellulose and hemicellulose-degrading enzymes in Fusarium commune transcriptome and functional characterization of three identified xylanases. Huang Y; Busk PK; Lange L Enzyme Microb Technol; 2015 Jun; 73-74():9-19. PubMed ID: 26002499 [TBL] [Abstract][Full Text] [Related]
19. Re-annotation of the CAZy genes of Trichoderma reesei and transcription in the presence of lignocellulosic substrates. Häkkinen M; Arvas M; Oja M; Aro N; Penttilä M; Saloheimo M; Pakula TM Microb Cell Fact; 2012 Oct; 11():134. PubMed ID: 23035824 [TBL] [Abstract][Full Text] [Related]
20. Correction: Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. Zhao Z; Liu H; Wang C; Xu JR BMC Genomics; 2014 Jan; 15():6. PubMed ID: 24422981 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]