BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 34215291)

  • 1. CAZyme prediction in ascomycetous yeast genomes guides discovery of novel xylanolytic species with diverse capacities for hemicellulose hydrolysis.
    Ravn JL; Engqvist MKM; Larsbrink J; Geijer C
    Biotechnol Biofuels; 2021 Jul; 14(1):150. PubMed ID: 34215291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Yeasts Have Evolved Divergent Enzyme Strategies To Deconstruct and Metabolize Xylan.
    Ravn JL; Ristinmaa AS; Coleman T; Larsbrink J; Geijer C
    Microbiol Spectr; 2023 Jun; 11(3):e0024523. PubMed ID: 37098941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellulose- and xylan-degrading yeasts: Enzymes, applications and biotechnological potential.
    Šuchová K; Fehér C; Ravn JL; Bedő S; Biely P; Geijer C
    Biotechnol Adv; 2022 Oct; 59():107981. PubMed ID: 35580749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and characterisation of xylanolytic yeasts isolated from decaying wood and sugarcane bagasse in Brazil.
    Lara CA; Santos RO; Cadete RM; Ferreira C; Marques S; Gírio F; Oliveira ES; Rosa CA; Fonseca C
    Antonie Van Leeuwenhoek; 2014 Jun; 105(6):1107-19. PubMed ID: 24748334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yeast GH30 Xylanase from
    Šuchová K; Chyba A; Hegyi Z; Rebroš M; Puchart V
    Molecules; 2022 Jan; 27(3):. PubMed ID: 35164030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive Genome Analysis of Cellulose and Xylan-Active CAZymes from the Genus
    Mukherjee S; Lodha TD; Madhuprakash J
    Microbiol Spectr; 2023 Jun; 11(3):e0502822. PubMed ID: 37071006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the plant polysaccharide degradation potential of the xylanolytic yeast Pseudozyma brasiliensis.
    Kaupert Neto AA; Borin GP; Goldman GH; Damásio AR; Oliveira JV
    FEMS Yeast Res; 2016 Mar; 16(2):fov117. PubMed ID: 26712719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two degradation strategies for overcoming the recalcitrance of natural lignocellulosic xylan by polysaccharides-binding GH10 and GH11 xylanases of filamentous fungi.
    Miao Y; Li P; Li G; Liu D; Druzhinina IS; Kubicek CP; Shen Q; Zhang R
    Environ Microbiol; 2017 Mar; 19(3):1054-1064. PubMed ID: 27878934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acetylated Xylan Degradation by Glycoside Hydrolase Family 10 and 11 Xylanases from the White-rot Fungus
    Kojima K; Sunagawa N; Yoshimi Y; Tryfona T; Samejima M; Dupree P; Igarashi K
    J Appl Glycosci (1999); 2022; 69(2):35-43. PubMed ID: 35891899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic mechanism of GH11 xylanases with different action modes from Aspergillus niger An76.
    Zhang S; Zhao S; Shang W; Yan Z; Wu X; Li Y; Chen G; Liu X; Wang L
    Biotechnol Biofuels; 2021 May; 14(1):118. PubMed ID: 33971954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical and Regulatory Analyses of Xylanolytic Regulons in Caldicellulosiruptor bescii Reveal Genus-Wide Features of Hemicellulose Utilization.
    Crosby JR; Laemthong T; Bing RG; Zhang K; Tanwee TNN; Lipscomb GL; Rodionov DA; Zhang Y; Adams MWW; Kelly RM
    Appl Environ Microbiol; 2022 Nov; 88(21):e0130222. PubMed ID: 36218355
    [No Abstract]   [Full Text] [Related]  

  • 12. Correction: Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi.
    Zhao Z; Liu H; Wang C; Xu JR
    BMC Genomics; 2014 Jan; 15():6. PubMed ID: 24422981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellulolytic and Xylanolytic Enzymes from Yeasts: Properties and Industrial Applications.
    Sohail M; Barzkar N; Michaud P; Tamadoni Jahromi S; Babich O; Sukhikh S; Das R; Nahavandi R
    Molecules; 2022 Jun; 27(12):. PubMed ID: 35744909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional analyses of xylanolytic enzymes involved in xylan degradation and utilization in Neurospora crassa.
    Wang R; Arioka M
    Int J Biol Macromol; 2021 Feb; 169():302-310. PubMed ID: 33333093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic and transcriptomic analysis of the thermophilic lignocellulose-degrading fungus Thielavia terrestris LPH172.
    Tõlgo M; Hüttner S; Rugbjerg P; Thuy NT; Thanh VN; Larsbrink J; Olsson L
    Biotechnol Biofuels; 2021 Jun; 14(1):131. PubMed ID: 34082802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The hemicellulose-degrading enzyme system of the thermophilic bacterium
    Broeker J; Mechelke M; Baudrexl M; Mennerich D; Hornburg D; Mann M; Schwarz WH; Liebl W; Zverlov VV
    Biotechnol Biofuels; 2018; 11():229. PubMed ID: 30159029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined genome and transcriptome sequencing to investigate the plant cell wall degrading enzyme system in the thermophilic fungus
    Hüttner S; Nguyen TT; Granchi Z; Chin-A-Woeng T; Ahrén D; Larsbrink J; Thanh VN; Olsson L
    Biotechnol Biofuels; 2017; 10():265. PubMed ID: 29158777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi.
    Zhao Z; Liu H; Wang C; Xu JR
    BMC Genomics; 2013 Apr; 14():274. PubMed ID: 23617724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GH30 Glucuronoxylan-Specific Xylanase from Streptomyces turgidiscabies C56.
    Maehara T; Yagi H; Sato T; Ohnishi-Kameyama M; Fujimoto Z; Kamino K; Kitamura Y; St John F; Yaoi K; Kaneko S
    Appl Environ Microbiol; 2018 Feb; 84(4):. PubMed ID: 29180367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellulose and hemicellulose-degrading enzymes in Fusarium commune transcriptome and functional characterization of three identified xylanases.
    Huang Y; Busk PK; Lange L
    Enzyme Microb Technol; 2015 Jun; 73-74():9-19. PubMed ID: 26002499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.