These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
317 related articles for article (PubMed ID: 34215565)
1. Targeting the replication stress response through synthetic lethal strategies in cancer medicine. Ngoi NYL; Pham MM; Tan DSP; Yap TA Trends Cancer; 2021 Oct; 7(10):930-957. PubMed ID: 34215565 [TBL] [Abstract][Full Text] [Related]
2. PARP Inhibition Increases the Reliance on ATR/CHK1 Checkpoint Signaling Leading to Synthetic Lethality-An Alternative Treatment Strategy for Epithelial Ovarian Cancer Cells Independent from HR Effectiveness. Gralewska P; Gajek A; Marczak A; Mikuła M; Ostrowski J; Śliwińska A; Rogalska A Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33352723 [TBL] [Abstract][Full Text] [Related]
3. Exploiting replicative stress in gynecological cancers as a therapeutic strategy. Ngoi NY; Sundararajan V; Tan DS Int J Gynecol Cancer; 2020 Aug; 30(8):1224-1238. PubMed ID: 32571890 [TBL] [Abstract][Full Text] [Related]
4. Restored replication fork stabilization, a mechanism of PARP inhibitor resistance, can be overcome by cell cycle checkpoint inhibition. Haynes B; Murai J; Lee JM Cancer Treat Rev; 2018 Dec; 71():1-7. PubMed ID: 30269007 [TBL] [Abstract][Full Text] [Related]
5. Cell cycle checkpoints and beyond: Exploiting the ATR/CHK1/WEE1 pathway for the treatment of PARP inhibitor-resistant cancer. Gupta N; Huang TT; Horibata S; Lee JM Pharmacol Res; 2022 Apr; 178():106162. PubMed ID: 35259479 [TBL] [Abstract][Full Text] [Related]
6. Beyond Kinases: Targeting Replication Stress Proteins in Cancer Therapy. Baillie KE; Stirling PC Trends Cancer; 2021 May; 7(5):430-446. PubMed ID: 33203609 [TBL] [Abstract][Full Text] [Related]
7. Participation of the ATR/CHK1 pathway in replicative stress targeted therapy of high-grade ovarian cancer. Gralewska P; Gajek A; Marczak A; Rogalska A J Hematol Oncol; 2020 Apr; 13(1):39. PubMed ID: 32316968 [TBL] [Abstract][Full Text] [Related]
8. Key Proteins of Replication Stress Response and Cell Cycle Control as Cancer Therapy Targets. Khamidullina AI; Abramenko YE; Bruter AV; Tatarskiy VV Int J Mol Sci; 2024 Jan; 25(2):. PubMed ID: 38279263 [TBL] [Abstract][Full Text] [Related]
9. The synthetic lethality of targeting cell cycle checkpoints and PARPs in cancer treatment. Li S; Wang L; Wang Y; Zhang C; Hong Z; Han Z J Hematol Oncol; 2022 Oct; 15(1):147. PubMed ID: 36253861 [TBL] [Abstract][Full Text] [Related]
10. Ataxia-telangiectasia mutated and ataxia telangiectasia and Rad3-related kinases as therapeutic targets and stratification indicators for prostate cancer. Gulliver C; Hoffmann R; Baillie GS Int J Biochem Cell Biol; 2022 Jun; 147():106230. PubMed ID: 35609768 [TBL] [Abstract][Full Text] [Related]
11. Genome-wide CRISPR synthetic lethality screen identifies a role for the ADP-ribosyltransferase PARP14 in DNA replication dynamics controlled by ATR. Dhoonmoon A; Schleicher EM; Clements KE; Nicolae CM; Moldovan GL Nucleic Acids Res; 2020 Jul; 48(13):7252-7264. PubMed ID: 32542389 [TBL] [Abstract][Full Text] [Related]
12. Ataxia telangiectasia and Rad3-related inhibitors and cancer therapy: where we stand. Mei L; Zhang J; He K; Zhang J J Hematol Oncol; 2019 Apr; 12(1):43. PubMed ID: 31018854 [TBL] [Abstract][Full Text] [Related]
13. Synthetic lethality between ATR and POLA1 reveals a potential new target for individualized cancer therapy. Schneider HE; Schmitt LM; Job A; Lankat-Buttgereit B; Gress T; Buchholz M; Gallmeier E Neoplasia; 2024 Nov; 57():101038. PubMed ID: 39128273 [TBL] [Abstract][Full Text] [Related]
14. Targeting replication stress in cancer therapy. da Costa AABA; Chowdhury D; Shapiro GI; D'Andrea AD; Konstantinopoulos PA Nat Rev Drug Discov; 2023 Jan; 22(1):38-58. PubMed ID: 36202931 [TBL] [Abstract][Full Text] [Related]
17. Advanced Prostate Cancer with ATM Loss: PARP and ATR Inhibitors. Neeb A; Herranz N; Arce-Gallego S; Miranda S; Buroni L; Yuan W; Athie A; Casals T; Carmichael J; Rodrigues DN; Gurel B; Rescigno P; Rekowski J; Welti J; Riisnaes R; Gil V; Ning J; Wagner V; Casanova-Salas I; Cordoba S; Castro N; Fenor de la Maza MD; Seed G; Chandran K; Ferreira A; Figueiredo I; Bertan C; Bianchini D; Aversa C; Paschalis A; Gonzalez M; Morales-Barrera R; Suarez C; Carles J; Swain A; Sharp A; Gil J; Serra V; Lord C; Carreira S; Mateo J; de Bono JS Eur Urol; 2021 Feb; 79(2):200-211. PubMed ID: 33176972 [TBL] [Abstract][Full Text] [Related]
18. PARP inhibitor resistance in ovarian cancer: Underlying mechanisms and therapeutic approaches targeting the ATR/CHK1 pathway. Biegała Ł; Gajek A; Marczak A; Rogalska A Biochim Biophys Acta Rev Cancer; 2021 Dec; 1876(2):188633. PubMed ID: 34619333 [TBL] [Abstract][Full Text] [Related]
19. Cancer-Specific Synthetic Lethality between ATR and CHK1 Kinase Activities. Sanjiv K; Hagenkort A; Calderón-Montaño JM; Koolmeister T; Reaper PM; Mortusewicz O; Jacques SA; Kuiper RV; Schultz N; Scobie M; Charlton PA; Pollard JR; Berglund UW; Altun M; Helleday T Cell Rep; 2016 Jan; 14(2):298-309. PubMed ID: 26748709 [TBL] [Abstract][Full Text] [Related]
20. SLFN11 promotes CDT1 degradation by CUL4 in response to replicative DNA damage, while its absence leads to synthetic lethality with ATR/CHK1 inhibitors. Jo U; Murai Y; Chakka S; Chen L; Cheng K; Murai J; Saha LK; Miller Jenkins LM; Pommier Y Proc Natl Acad Sci U S A; 2021 Feb; 118(6):. PubMed ID: 33536335 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]