These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
317 related articles for article (PubMed ID: 34215565)
21. WEE1 inhibition targets cell cycle checkpoints for triple negative breast cancers to overcome cisplatin resistance. Zheng H; Shao F; Martin S; Xu X; Deng CX Sci Rep; 2017 Mar; 7():43517. PubMed ID: 28262781 [TBL] [Abstract][Full Text] [Related]
22. Essential role of CK2α for the interaction and stability of replication fork factors during DNA synthesis and activation of the S-phase checkpoint. Guerra B; Doktor TK; Frederiksen SB; Somyajit K; Andresen BS Cell Mol Life Sci; 2022 Jun; 79(6):339. PubMed ID: 35661926 [TBL] [Abstract][Full Text] [Related]
23. The ATM and Rad3-Related (ATR) Protein Kinase Pathway Is Activated by Herpes Simplex Virus 1 and Required for Efficient Viral Replication. Edwards TG; Bloom DC; Fisher C J Virol; 2018 Mar; 92(6):. PubMed ID: 29263259 [TBL] [Abstract][Full Text] [Related]
24. Tousled-like kinases stabilize replication forks and show synthetic lethality with checkpoint and PARP inhibitors. Lee SB; Segura-Bayona S; Villamor-Payà M; Saredi G; Todd MAM; Attolini CS; Chang TY; Stracker TH; Groth A Sci Adv; 2018 Aug; 4(8):eaat4985. PubMed ID: 30101194 [TBL] [Abstract][Full Text] [Related]
25. Targeting ATR as Cancer Therapy: A new era for synthetic lethality and synergistic combinations? Bradbury A; Hall S; Curtin N; Drew Y Pharmacol Ther; 2020 Mar; 207():107450. PubMed ID: 31836456 [TBL] [Abstract][Full Text] [Related]
26. A requirement for STAG2 in replication fork progression creates a targetable synthetic lethality in cohesin-mutant cancers. Mondal G; Stevers M; Goode B; Ashworth A; Solomon DA Nat Commun; 2019 Apr; 10(1):1686. PubMed ID: 30975996 [TBL] [Abstract][Full Text] [Related]
27. A Tale of Two Checkpoints: ATR Inhibition and PD-(L)1 Blockade. Ngoi NYL; Peng G; Yap TA Annu Rev Med; 2022 Jan; 73():231-250. PubMed ID: 34644155 [TBL] [Abstract][Full Text] [Related]
28. Inhibition of ATR-dependent feedback activation of Chk1 sensitises cancer cells to Chk1 inhibitor monotherapy. Massey AJ Cancer Lett; 2016 Dec; 383(1):41-52. PubMed ID: 27693461 [TBL] [Abstract][Full Text] [Related]
29. Moving From Poly (ADP-Ribose) Polymerase Inhibition to Targeting DNA Repair and DNA Damage Response in Cancer Therapy. Gourley C; Balmaña J; Ledermann JA; Serra V; Dent R; Loibl S; Pujade-Lauraine E; Boulton SJ J Clin Oncol; 2019 Sep; 37(25):2257-2269. PubMed ID: 31050911 [TBL] [Abstract][Full Text] [Related]
30. Synthetic Lethality through the Lens of Medicinal Chemistry. Myers SH; Ortega JA; Cavalli A J Med Chem; 2020 Dec; 63(23):14151-14183. PubMed ID: 33135887 [TBL] [Abstract][Full Text] [Related]
31. The Influence of PARP, ATR, CHK1 Inhibitors on Premature Mitotic Entry and Genomic Instability in High-Grade Serous Gralewska P; Gajek A; Rybaczek D; Marczak A; Rogalska A Cells; 2022 Jun; 11(12):. PubMed ID: 35741017 [TBL] [Abstract][Full Text] [Related]
32. Prevention of DNA Replication Stress by CHK1 Leads to Chemoresistance Despite a DNA Repair Defect in Homologous Recombination in Breast Cancer. Meyer F; Becker S; Classen S; Parplys AC; Mansour WY; Riepen B; Timm S; Ruebe C; Jasin M; Wikman H; Petersen C; Rothkamm K; Borgmann K Cells; 2020 Jan; 9(1):. PubMed ID: 31963582 [TBL] [Abstract][Full Text] [Related]
33. Loss of DNA Damage Response in Neuroblastoma and Utility of a PARP Inhibitor. Takagi M; Yoshida M; Nemoto Y; Tamaichi H; Tsuchida R; Seki M; Uryu K; Nishii R; Miyamoto S; Saito M; Hanada R; Kaneko H; Miyano S; Kataoka K; Yoshida K; Ohira M; Hayashi Y; Nakagawara A; Ogawa S; Mizutani S; Takita J J Natl Cancer Inst; 2017 Nov; 109(11):. PubMed ID: 29059438 [TBL] [Abstract][Full Text] [Related]
34. Curcumin suppresses multiple DNA damage response pathways and has potency as a sensitizer to PARP inhibitor. Ogiwara H; Ui A; Shiotani B; Zou L; Yasui A; Kohno T Carcinogenesis; 2013 Nov; 34(11):2486-97. PubMed ID: 23825154 [TBL] [Abstract][Full Text] [Related]
35. Targeting the DNA damage response beyond poly(ADP-ribose) polymerase inhibitors: novel agents and rational combinations. Ngoi NYL; Westin SN; Yap TA Curr Opin Oncol; 2022 Sep; 34(5):559-569. PubMed ID: 35787597 [TBL] [Abstract][Full Text] [Related]
36. Targeting replication stress response using polypurine reverse hoogsteen hairpins directed against WEE1 and CHK1 genes in human cancer cells. Aubets E; Noé V; Ciudad CJ Biochem Pharmacol; 2020 May; 175():113911. PubMed ID: 32173365 [TBL] [Abstract][Full Text] [Related]
38. Claspin - checkpoint adaptor and DNA replication factor. Smits VAJ; Cabrera E; Freire R; Gillespie DA FEBS J; 2019 Feb; 286(3):441-455. PubMed ID: 29931808 [TBL] [Abstract][Full Text] [Related]
39. Targeting DNA damage response pathways to activate the STING innate immune signaling pathway in human cancer cells. Wayne J; Brooks T; Landras A; Massey AJ FEBS J; 2021 Aug; 288(15):4507-4540. PubMed ID: 33529438 [TBL] [Abstract][Full Text] [Related]
40. Mechanisms for stalled replication fork stabilization: new targets for synthetic lethality strategies in cancer treatments. Liao H; Ji F; Helleday T; Ying S EMBO Rep; 2018 Sep; 19(9):. PubMed ID: 30108055 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]