These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
317 related articles for article (PubMed ID: 34215565)
41. An extending ATR-CHK1 circuitry: the replication stress response and beyond. Simoneau A; Zou L Curr Opin Genet Dev; 2021 Dec; 71():92-98. PubMed ID: 34329853 [TBL] [Abstract][Full Text] [Related]
42. Requirement for NBS1 in the S phase checkpoint response to DNA methylation combined with PARP inhibition. Horton JK; Stefanick DF; Zeng JY; Carrozza MJ; Wilson SH DNA Repair (Amst); 2011 Feb; 10(2):225-34. PubMed ID: 21130714 [TBL] [Abstract][Full Text] [Related]
43. Analyzing the Opportunities to Target DNA Double-Strand Breaks Repair and Replicative Stress Responses to Improve Therapeutic Index of Colorectal Cancer. Tomasini PP; Guecheva TN; Leguisamo NM; Péricart S; Brunac AC; Hoffmann JS; Saffi J Cancers (Basel); 2021 Jun; 13(13):. PubMed ID: 34201502 [TBL] [Abstract][Full Text] [Related]
44. Dbf4 is direct downstream target of ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR) protein to regulate intra-S-phase checkpoint. Lee AY; Chiba T; Truong LN; Cheng AN; Do J; Cho MJ; Chen L; Wu X J Biol Chem; 2012 Jan; 287(4):2531-43. PubMed ID: 22123827 [TBL] [Abstract][Full Text] [Related]
45. The PARP inhibitor PJ34 causes a PARP1-independent, p21 dependent mitotic arrest. Madison DL; Stauffer D; Lundblad JR DNA Repair (Amst); 2011 Oct; 10(10):1003-13. PubMed ID: 21840268 [TBL] [Abstract][Full Text] [Related]
46. Synergism between ATM and PARP1 Inhibition Involves DNA Damage and Abrogating the G Mak JPY; Ma HT; Poon RYC Mol Cancer Ther; 2020 Jan; 19(1):123-134. PubMed ID: 31597711 [TBL] [Abstract][Full Text] [Related]
47. The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Smith J; Tho LM; Xu N; Gillespie DA Adv Cancer Res; 2010; 108():73-112. PubMed ID: 21034966 [TBL] [Abstract][Full Text] [Related]
48. Emerging strategies for cancer therapy by ATR inhibitors. Yano K; Shiotani B Cancer Sci; 2023 Jul; 114(7):2709-2721. PubMed ID: 37189251 [TBL] [Abstract][Full Text] [Related]
49. The DNA Damaging Revolution: PARP Inhibitors and Beyond. Yap TA; Plummer R; Azad NS; Helleday T Am Soc Clin Oncol Educ Book; 2019 Jan; 39():185-195. PubMed ID: 31099635 [TBL] [Abstract][Full Text] [Related]
50. Depletion of ATR selectively sensitizes ATM-deficient human mammary epithelial cells to ionizing radiation and DNA-damaging agents. Cui Y; Palii SS; Innes CL; Paules RS Cell Cycle; 2014; 13(22):3541-50. PubMed ID: 25483091 [TBL] [Abstract][Full Text] [Related]
52. Advances in ATM, ATR, WEE1, and CHK1/2 inhibitors in the treatment of PARP inhibitor-resistant ovarian cancer. Tang Q; Wang X; Wang H; Zhong L; Zou D Cancer Biol Med; 2024 Feb; 20(12):915-21. PubMed ID: 38318945 [No Abstract] [Full Text] [Related]
53. PARP and PARG inhibitors in cancer treatment. Slade D Genes Dev; 2020 Mar; 34(5-6):360-394. PubMed ID: 32029455 [TBL] [Abstract][Full Text] [Related]
54. Targeting ATR in patients with cancer. Ngoi NYL; Pilié PG; McGrail DJ; Zimmermann M; Schlacher K; Yap TA Nat Rev Clin Oncol; 2024 Apr; 21(4):278-293. PubMed ID: 38378898 [TBL] [Abstract][Full Text] [Related]
55. DNA-PKcs is required to maintain stability of Chk1 and Claspin for optimal replication stress response. Lin YF; Shih HY; Shang Z; Matsunaga S; Chen BP Nucleic Acids Res; 2014 Apr; 42(7):4463-73. PubMed ID: 24500207 [TBL] [Abstract][Full Text] [Related]
56. HDAC1 and HDAC2 integrate checkpoint kinase phosphorylation and cell fate through the phosphatase-2A subunit PR130. Göder A; Emmerich C; Nikolova T; Kiweler N; Schreiber M; Kühl T; Imhof D; Christmann M; Heinzel T; Schneider G; Krämer OH Nat Commun; 2018 Feb; 9(1):764. PubMed ID: 29472538 [TBL] [Abstract][Full Text] [Related]
57. RP-3500: A Novel, Potent, and Selective ATR Inhibitor that is Effective in Preclinical Models as a Monotherapy and in Combination with PARP Inhibitors. Roulston A; Zimmermann M; Papp R; Skeldon A; Pellerin C; Dumas-Bérube É; Dumais V; Dorich S; Fader LD; Fournier S; Li L; Leclaire ME; Yin SY; Chefson A; Alam H; Yang W; Fugère-Desjardins C; Vignini-Hammond S; Skorey K; Mulani A; Rimkunas V; Veloso A; Hamel M; Stocco R; Mamane Y; Li Z; Young JTF; Zinda M; Black WC Mol Cancer Ther; 2022 Feb; 21(2):245-256. PubMed ID: 34911817 [TBL] [Abstract][Full Text] [Related]
58. Rad51 Degradation: Role in Oncolytic Virus-Poly(ADP-Ribose) Polymerase Inhibitor Combination Therapy in Glioblastoma. Ning J; Wakimoto H; Peters C; Martuza RL; Rabkin SD J Natl Cancer Inst; 2017 Mar; 109(3):1-13. PubMed ID: 28376211 [TBL] [Abstract][Full Text] [Related]
59. Differential response of normal and malignant urothelial cells to CHK1 and ATM inhibitors. Wang WT; Catto JW; Meuth M Oncogene; 2015 May; 34(22):2887-96. PubMed ID: 25043304 [TBL] [Abstract][Full Text] [Related]
60. WEE1 inhibitor and ataxia telangiectasia and RAD3-related inhibitor trigger stimulator of interferon gene-dependent immune response and enhance tumor treatment efficacy through programmed death-ligand 1 blockade. Wu X; Kang X; Zhang X; Xie W; Su Y; Liu X; Guo L; Guo E; Li F; Hu D; Qin X; Fu Y; Peng W; Jia J; Wang C Cancer Sci; 2021 Nov; 112(11):4444-4456. PubMed ID: 34382294 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]